Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Метод преобразования (свертки) схемы




 

Если схема электрической цепи содержит только один источник энергии (E или J), то пассивная часть схемы может быть преобразована (свернута) к одному эквивалентному эле­менту R Э(рис. 7).

 

 
 

 

 


Свертка схемы начинается с самых удаленных от источника ветвей, про­водится в не­сколько этапов до достижения полной свертки. После полной свертки схемы по закону Ома определяется ток источника: . Токи в ос­тальных элементах исходной схемы находятся в процессе об­ратной развертки схемы. Такой метод расчета токов получил название метода последова­тельного преобразования (свертки) схемы.

При применении данного метода возможны следующие виды преобразо­ваний.

1) Последовательное преобразование заключается в замене нескольких элементов, включенных последовательно, одним эквивалентным (рис. 8).

Несложно доказать, что справедливы следующие соотношения:

и

 
 

 


2) Параллельное преобразование состоит в замене нескольких элемен­тов, вклю­чен­ных параллельно, одним эквивалентным (рис. 9).

 

 
 

 


Несложно доказать, что справедливы следующие соотношения:

и

Для двух элементов: и

3) Взаимное преобразование схем звезда-треугольник (рис. 4) возни­кает при свертке сложных схем.

Условием эквивалентности двух схем являются равенства для них токов (I 1, I 2, I 3), на­пряжений (U 12, U 23, U 31) и входных сопротивлений (R 12, R 23, R 31) и соответственно входных проводимостей (G 12, G 23, G 31).

Приравняем входные сопротивления для обеих схем со стороны двух произвольных ветвей при отключенной третей (рис. 10):

 

(1)

(2)

(3)

 

 
 

 


Сложим почленно уравнения (1) и (3) и вычтем из суммы уравнение (2), получим:

, по аналогии: , .

Приравняем входные проводимости для обеих схем со стороны произ­вольной вер­шины и двух других вершин, замкнутых накоротко (рис. 11):

(4)

(5)

(6)

 

Сложим почленно уравнения (4) и (5) и вычтем уравнение (6), получим:

, по аналогии: , .

В последних уравнениях заменим проводимости на соответствующие им сопротивле­ния , получим:

; ; .

При наличии полной симметрии соотношение между параметрами экви­валентных схем составляет: .

4) Замена параллельных ветвей эквивалентной ветвью (рис. 12) осу­ществляется со­гласно теореме об эквивалентном генераторе.

 
 

 

 


Напряжение холостого хода U xx =E Э определяется по методу двух уз­лов:

.

Эквивалентное входное сопротивление находится методом свертки схемы:

.

 

5) Перенос источника ЭДС через узел схемы: источник ЭДС Е можно перенести че­рез узел во все ветви, отходящие от узла (рис. 13а, б.).

 

 

6) Привязка источника тока к произвольному узлу согласно схеме(рис. 14а, б):

 

 
 

 

 


7) Взаимное преобразование схем с источником напряжения и систоч­ником тока согласно схеме(рис. 15а, б):

 

 
 

 

 


Схемы эквивалентны при равенстве для обеих напряжений U и токов I на на­грузке:

.

Сравнивая левые и правые части равенства, получим соотношения между парамет­рами эквивалентных схем:

.

 

Метод законов Кирхгофа

 

Теоретическая база метода: 1-й и 2-й законы Кирхгофа.

1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю ().

2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произ­вольном кон­туре схемы равна алгебраической сумме ЭДС ().

Пусть требуется выполнить расчет режима в заданной сложной схеме (рис. 16) и оп­ределить токи в ветвях, напряжения на отдельных элементах, мощности источников и при­емников энергии. Задана схема цепи и параметры ее отдельных элементов (E 1, E 2, J 1, J 1, J 2, R 1, R 2, R 3, R 4, R 5).

 

 
 

 

 


Анализируем структуру схемы: схема содержит n =3 (0, 1, 2) узлов и m =5 ветвей с не­определенными токами. В ветвях с источниками тока J токи оп­ре­делены источниками. Об­щее число уравнений должно быть равно числу опре­деляемых токов “ m ”.

Последовательность (алгоритм) расчета.

1) Задаются (произвольно) положительными направлениями токов в вет­вях схемы (I 1, I 2, I 3, I 4, I 5).

2) Составляется (n -1) уравнений для узлов по первому закону Кирхгофа. Уравнение для последнего n -го узла является зависимым (оно может быть по­лучено путем сложения первых (n -1) уравнений).

3) Не­достающие m -(n -1) уравнений составляются по 2-му закону Кирх­гофа. Пра­вило выбора контуров для составления уравнений: каждый после­дующий контур должен включать в себя хотя бы одну новую ветвь, не охвачен­ную предыдущими уравнениями. Число неза­висимых контуров для схемы лю­бой сложности не может быть больше числа m -(n -1).

Ниже приведена система уравнений Кирхгофа для схемы рис. 16, состоя­щая из m =5 уравнений, из которых n -1=2 составлены для узлов 1 и 2 по 1-му закону Кирхгофа и m -(n -1)=3 составлены для контуров К1, К2, К3 по 2-му за­кону Кирхгофа:

 
 


- узел 1,

- узел 2,

- контур К1,

- контур К2,

- контур К3.

 

4) Система уравнений приводится к матричной форме, составляются мат­рицы ко­эф­фициентов:

;

5) Система уравнений решается на ЭВМ по стандартной программе для решения ли­нейных алгебраических уравнений с вещественными коэффициен­тами (SU1), в резуль­тате чего определяются неизвестные токи I 1, I 2, I 3, I 4, I 5. От­рицательные результаты, по­лучаемые для некоторых токов, означают, что их действительные (физические) направ­ления не соот­ветствуют направлениям, принятым в начале расчета.

6) Определяются напряжения на отдельных элементах схемы (), мощно­сти источников ЭДС (),источников тока () и прием­ников (). При этом мощности приемников энергии всегда положи­тельны, а мощности источников энергии могут быть отрицательными, если со­множители в произведениях и не совпадают по направлению.

4. Метод контурных токов

 

Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в со­четании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их ал­гебраические суммы. В качестве неизвестных величин, подлежащих определе­нию, в данном методе выступают контурные токи. Общее число неиз­вестных составляет m -(n -1).

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 11. Пара­метры отдельных элементов схемы заданы.

Последовательность (алгоритм) расчета.

1) Задаются (произвольно) положительными направлениями контурных токов в кон­турах-ячейках схемы(Iк 1, Iк 2, Iк 3 ). Контуры-ячейки следует выби­рать так, чтобы они не включали в себя ветви с источниками тока. Ветви с ис­точниками тока J образуют свои кон­туры с заданными токами (J 1, J 2).

2) Составляются m -(n -1) уравнений по 2-му закону Кирхгофа для вы­бранных конту­ров-ячеек с контурными токами Iк 1, Iк 2, Iк 3. В уравнениях учиты­ваются падения напряжений как от собственного контурного тока, так и от смежных контурных токов.

 
 

 


Ниже приведена система контурных уравнений для схемы рис. 17:

В обобщенной форме система контурных уравнений имеет вид:

 

Здесь введены следующие обозначения:

R 11= R 1 + R 4; R 22 = R 2 + R 5 и т. д. – собственные сопротивления контуров, равные сумме сопротивлений всех элементов контура;

R 12 = R 21 = 0; R 23 = R 32 = - R 5 и т. д. – взаимные сопротивления между двумя смежными контурами, они положительны – если контурные токи в ветви совпадают, и отрицательны – если контурные токи в ветви направлены встречно, всегда отрицательны – если все контур­ные токи ориентированы оди­наково (например, по часовой стрелке), равны нулю – если кон­туры не имеют общей ветви;

E 11 = E 1 + J 1 R 4, E 22 = - E 2, E 33 = - E 3 + J 2 R 3 и т. д. – контурные ЭДС, равные алгебраиче­ской сумме слагаемых E nn = S E + S JR от всех источников контура.

Система контурных уравнений в матричной форме:

или в сокращенно ,

где - матрица контурных сопротивлений, - матрица контурных токов, - мат­рица контурных ЭДС.

3) Система контурных уравнений решается на ЭВМ по стандартной про­грамме для решения систем линейных алгебраических уравнений с веществен­ными коэффициентами (SU1), в результате чего определяются неизвестные контурные токи Iк 1, Iк 2, Iк 3.

4) Выбираются положительные направления токов в ветвях исходной схемы (рис. 1) (I 1, I 2, I 3, I 4, I 5). Токи ветвей определяются по принципу наложе­ния как алгебраические суммы контурных токов, протекающих в данной ветви.

I 1 = Iк 1 - J 1; I 2 = - Iк 2; I 3 = - Iк 3J 2; I 4 = Iк 1Ik 3; I 5 = - Iк 2 + Ik 3 .

5) При необходимости определяются напряжения на отдельных элемен­тах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемни­ков энергии (Pk = Ik 2 × Rk).

 

Метод узловых потенциалов

 

Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы при­нимают равным нулю, а потенциалы остальных (n -1) узлов считают неизвестными, подле­жащими определению. Общее число неиз­вестных составляет (n -1).

Рассмотрим обобщенную ветвь некоторой сложной схемы (рис. 18).

 
 

 


Свяжем потенциалы концов ветви (узлов) между собой через падения напряжений на отдельных участках:

или

Уравнение, связывающее потенциалы конечных точек ветви через паде­ния напряже­ний на ее отдельных участках, называется потенциальным уравне­нием ветви.

Из потенциального уравнения ветви могут быть определены ток ветви и напряжение на резисторе:

, .

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 19. Пара­метры отдельных элементов схемы заданы.

Принимаем потенциал узла 0 равным нулю (j 0 = 0), а потенциалы узлов 1 и 2 (j 1 и j 2) будем считать неизвестными, подлежащими определению.

Зададимся положительными направлениями токов в ветвях схемы I 1, I 2, I 3, I 4, I 5. Со­ставим потенциальные уравнения ветвей и выразим из них токи ветвей:

I 1 = (j 1 j 0 + E 1 )/ R 1

I 2 = (j 2 j 0 + E 2 )/ R 2

I 3 = (j 1 j 0 + E 3 )/ R 3

I 4 = (j 0 j 1 )/ R 4

I 5 = (j 0 - j 2 )/ R 5

 
 

 

 


Составим (n -1) уравнение по 1-му закону Кирхгофа для узлов 1 и 2:

- I 1I 3 + I 4J 1J 2 = 0

- I 2 + I 3 + I 5 + J 2 =0

Подставим значения токов из потенциальных уравнений в уравнения 1-го закона Кирхгофа. После приведения коэффициентов получим систему узловых уравнений:

 
 


В обобщенной форме система узловых уравнений имеет вид:

 
 

 


Здесь введены следующие обозначения:

G 11 =1/ R 1 +1/ R 3 +1/R4; G 22 =1/ R 2 +1/ R 3 +1/ R 5 и т.д. – собственные прово­димости узлов, равные суммам проводимостей всех ветвей, сходящихся в дан­ном узле, всегда положи­тельны;

G 12 = G 21 = 1/ R 3; Gnm = Gm n– взаимные проводимости между смежными узлами (1 и 2, m и n), равные сумме проводимостей ветвей, соединяющих эти узлы, всегда отрицательны;

J 11 = - E 1 / R 3E 3 / R 3 J 1; J 11 =- E 2 / R 2E 3 / R 3 + J 1 и т.д. – узловые токи уз­лов, равные алгебраической сумме слагаемых E/R и J от всех ветвей, сходя­щихся в узле (знак ”+”, если источник действует к узлу, и знак “-”, если источ­ник действует от узла).

Система узловых уравнений в матричной форме:

или сокращенно ,

где - матрица узловых проводимостей, - матрица узловых по­тенциа­лов, - матрица узловых токов.

Последовательность (алгоритм) расчета.

1) Принимают потенциал одного из узлов схемы равным нулю, а потен­циалы осталь­ных (n -1) узла считают неизвестными, подлежащими определе­нию.

2) Руководствуясь обобщенной формой, составляют (n -1) уравнение для узлов с неиз­вестными потенциалами.

3) Определяются коэффициенты узловых уравнений и составляются их матрицы.

4) Система узловых уравнений решается на ЭВМ по стандартной про­грамме для ре­шения систем линейных алгебраических уравнений с веществен­ными коэффициентами (SU1), в результате чего определяются неизвестные по­тенциалы узлов j 1, j 2, …

5) Выбираются положительные направления токов в ветвях исходной схемы I 1, I 2, I 3, I 4, I 5. Токи ветвей определяются из потенциальных уравнений ветвей через потенциалы узлов j 1, j 2, ….

6) При необходимости определяются напряжения на отдельных элемен­тах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемни­ков энергии (Pk = Ik 2 × Rk).

 

 

Метод двух узлов

 

Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2 (рис. 20).

 


 


Принимаем j 0 = 0, тогда уравнение для узла 1 по методу узловых потен­циалов будет иметь вид: j 1 G 11 = J 11, откуда следует непосредственное опреде­ление напряжения между уз­лами схемы:

- уравнение метода двух узлов.

Применительно к схеме рис. 20 данное уравнение примет конкретную форму:





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 2248 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2187 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.