Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Предмет теории вероятностей. Случайные события.




Оглавление

 

Глава 1. Основные понятия и формулы теории вероятностей ………………………………………….. 5

§ 1. Предмет теории вероятностей. Случайные

события ………………………………………. 5

§ 2. Вероятность случайного события …………... 8

§ 3 Алгебра событий …………………………….. 12

§ 4 Формула сложения вероятностей …………… 17

§ 5 Аксиоматический подход к теории

вероятностей ………………………………… 19

§ 6 Классическая схема теории вероятностей …. 24

§ 7 Геометрические вероятности ……………….. 26

§ 8 Условная вероятность. Независимость

случайных событий …………………………. 29

§ 9 Формула полной вероятности. Формулы

Байеса ……………………………………….... 39

§ 10 Комбинаторика ………………………………. 42

§ 11 Схема Бернулли ……………………………..... 49

§ 12 Вероятности при больших значениях n.

 

Глава 2. Случайные величины и их характеристики 62

§ 1 Случайная величина и её функция

распределения.................................................. 62

§ 2 Дискретные случайные величины................. 67

§ 3 Непрерывные случайные величины.............. 70

§ 4 Функции от случайной величины.................. 78

§ 5 Системы случайных величин ………………. 81

§ 6 Независимые случайные величины ………... 89

§ 7 Математическое ожидание случайной

величины …………………………………….. 94

§ 8 Дисперсия случайной величины ………….... 109

 

§ 9. Корреляционный момент и корреляция

случайных величин ……………………………. 113

 

Глава 3. Закон больших чисел и центральная

предельная теорема ……………………… 119

§ 1 НеравенствоЧебышева ……………………... 119

§ 2 Закон больших чисел ………………………... 123

§ 3 Центральная предельная теорема Ляпунова и

её следствия …………………………………129

Задачи по теории вероятностей …………………… 138

Индивидуальные задания № 1 по теории

вероятностей …………………………………………… 153

Индивидуальные задания № 2 по теории

вероятностей …………………………………………... 166

Таблица значений функции …….. 183

 

Таблица значений для функции

................................................... 185

 

Степени числа e....................................................... 188

 

Таблица значений функции ………………..... 189

 

 

Глава I. Основные понятия и формулы теории вероятностей.

 

 

Предмет теории вероятностей. Случайные события.

 

Предметом теории вероятностей являются модели опытов (экспериментов, наблюдений, испытаний), которые осуществляются, как только создаются определённые совокупности условий.

Примеры опытов:

1) бросание монеты 20 раз,

2) покупка лотерейного билета,

3) приход утром (между 8 и 9 часами) на станцию метро «Новогиреево»,

4) день 1 января,

5) день 1 января 2010 года.

На практике часто встречаются такие ситуации, когда исход проводимого нами опыта нельзя предсказать заранее с полной уверенностью. Например (смотри примеры опытов выше)

1) невозможно предсказать, что герб выпадет ровно 9 раз, или герб выпадет от 7 до 15 раз

2) выпадет ли выигрыш на лотерейный билет с таким-то номером

3) мы будем ждать электропоезд от 20 до 80 секунд

4) невозможно предсказать, что 1 января в Москве пойдёт снег.

Во всех подобных ситуациях мы вынуждены считать результат опыта зависящего от случая, рассматривать его как случайное событие.

Определение. Некоторое событие называется случайным по отношению к данному опыту, если при осуществлении этого опыта оно может наступить, а может и не наступить.

Примером случайного события может служить выпадение герба ровно 9 раз в опыте с бросанием монеты 20 раз, выигрыш проданному лотерейному билету, будем ждать поезд от 20 до 80 секунд, совпадение даты рождения (в опыте) у двух наугад выбранных студентов на лекции по теории вероятностей и в данной аудитории.

Случайные события обозначаются в дальнейшем А, В, С и т.д.

Замечание. Согласно данному выше определению, событие считают случайным, если его наступление в результате опыта представляет собой лишь одну из двух возможностей – оно либо наступит, либо не наступит.

События, которые в результате данного опыта всегда наступают, называется достоверными (обозначение I), которые никогда не наступают – невозможными событиями (обозначение Ø).

Теория вероятностей рассматривает модели таких опытов, которые могут быть повторены в одних и тех же условиях (достаточно) неограниченное число раз, т.е. мы будем предполагать, что в принципе возможно создать много раз одни и те же условия, осуществляющие данный опыт.

Случайные события, наступление которых возможно в такого рода опытах, называются массовыми случайными событиями.

Массовые случайные события следует отличать от единичных, обладающих той особенностью, что опыт, с которым связаны эти события, принципиально невоспроизводим. Например, событие «1 января 2010 г. в Москве шел снег» является в этом смысле единичным (исключительным), так как воспроизвести наступление указанного дня много раз невозможно. В то же время событие «1 января в Москве шёл снег» (без упоминания о годе) является несомненно, массовым: ведь наблюдать погоду в Москве 1 января можно много раз (в течение многих лет).

В самых общих словах предмет теории вероятностей может быть определён следующим образом:

Теория вероятностей занимается изучением закономерностей, присущих массовым случайным событиям.

Оказывается, и случайные события подчиняются некоторым (вероятностным) закономерностям. Исход каждого опыта по отношению к данному событию является случайным, неопределённым. Однако средний результат большого числа опытов утрачивает случайный характер, становится закономерным.

Например, рассмотрим опыт с бросанием данной монеты. Предположим, что бросание производится много раз подряд. Оказывается «доля» (средний результат) тех бросаний, при которых выпадает герб (т.е. отношение числа таких бросаний к числу всех бросаний) с увеличением числа бросаний приближается к (или другому числу – это зависит от состояния монеты).

Приведём другой пример. В сосуде заключён газ. Находясь в беспрерывном движении, молекулы газа ударяются друг о друга и вследствие этого постоянно меняют величину и направление своей скорости. Казалось бы, отсюда следует, что давление газа на стенки сосуда, обусловленное ударами отдельных молекул о стенки, должно меняться случайным, неконтролируемым образом. Однако это не так: давление газа подчиняется строгой закономерности (закону Бойля-Мариотта). Причина этой закономерности кроется в том, что давление газа на стенки сосуда есть средний результат воздействия большого числа молекул. Случайные особенности, свойственные движению отдельных молекул, в массе (поскольку молекул много) взаимно погашаются, нивелируются и возникает некоторая средняя закономерность.

Именно эта устойчивость среднего результата, его независимость от колебаний отдельных слагаемых (отдельных исходов опыта) и обуславливает широту применения теории вероятностей. Физика, биология, медицина, лингвистика и т.д.- все эти области науки используют (одни в большей степени, другие в меньшей) понятия и выводы теории вероятностей и родственных ей дисциплин - математической статистики, теории информации и т.д.

Перейдём теперь к простейшей, самой главной закономерности в случайных событиях, в конечном счёте, составляющей основу всех приложений теории вероятностей к практике.

 





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 917 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2487 - | 2350 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.