Версия 1. Феномен античной науки. — Первые древнегреческие натурфилософы. — Версия 2. Цивилизация Древнего Египта — колыбель многообразных областей человеческого знания. — Версия 3. Возникновение науки в контексте поздней средневековой культуры. — Версия 4. Рождение науки Нового времени. — Соединение эксперимента с математикой. — Версия 5. От преднауки к науке.
Проблема исторического возраста науки имеет несколько решений. Все они обладают рядом сильных и слабых позиций, все они уязвимы, и в рамках каждого из предложенных версионных подходов наука приобретает специфические черты и характеристики, окрашенные конкретными историческими ориентациями датирующего ее рождение времени.
Версия.1. Некоторые ученые указывают на феномен античной науки, считая, что именно в нем сформировались первые образцы теоретической науки и, в частности, геометрия Евклида. Первые натурфилософы (фисиологи, по определению Стагирита) были в большей степени учеными, чем философами. Считается, что античный мир обеспечил применение метода в математике и вывел ее на теоретический уровень. В античности большое внимание уделялось и постижению и развертыванию истины, т.е. логике и диалектике.
Явные сдвиги были связаны со всеобщей рационализацией мышления. Дальнейшее освобождение от метафоричности и переход от мышления, обремененного чувственными образами, к интеллекту, оперирующему понятиями, представил традиционные философские проблемы в новом свете и ином звучании. Происходит изгнание всех антропоморфных сил. Поэтика мифа уступает место зарождающемуся логосу, «разумному слову» о природе вещей. Появляются первые «фисиологи», или натурфилософы,
с их учением о первоэлементах мира (вода, огонь, земля, воздух). Постепенно философские системы приобретают вид все более и более рационально оформленного знания. Линностно-образная форма мифа заменяется без-личностно-понятийной формой философии. Олицетворение уступает место абстракции. На место множества человекообразных богов в основу всего ставится единое «естество» — вечная и многообразная природа. И если в мифологии действительность воображалась, в натурфилософии она начинает пониматься.
Сенека первым применил название philosophia naturalis как общее обозначение философских течений Древней Греции, предшествующих Сократу и софистам. Первые древнегреческие натурфилософы — философы, изучающие природу, представители милетской школы: Фалес, Анакси-мен, Анаксимандр, а также Гераклит Эффеский — были также и учеными. Они занимались изучением астрономии, географии, геометрии, метеорологии. Фалес, например, предсказал солнечное затмение и первым объяснил природу лунного света, считая, что Луна отражает свой свет от Солнца. Доказывая простейшие геометрические теоремы, он вводил и использовал дедуктивный метод. Названия приписываемых по традиции Фалесу работ: «Морская астрология», «О солнцестоянии», «О равноденствии», «О началах» — свидетельствуют, в какой степени ум его был обращен к познанию природы. Ученика Фалеса Анаксимандра называют «истинным творцом греческой, а вместе с тем и всей европейской науки о природе». Он высказал положение, что началом (принципом) и стихией (элементом) сущего является апейрон (от греч. «беспредельное»). Алейрон — бесконечное, неопределенное — лежит в основе всего, обладает творческой силой и является причиной всеобщего возникновения и уничтожения.
Логос натурфилософии имел своим содержанием поиск основ мироздания, причин и законов строения мира. «Фисиологи» стремились открыть единую первооснову многообразных природных явлений. Названные ими в качестве первоначал сущности были не просто физическими стихиями. Они несли в себе сферхфизический смысл, так как выступали носителями мироединства. Сам термин «логос» трактовался многозначно: как всеобщий закон, основа мира, мировой разум и слово. Как слово о сущем, логос противопоставлялся не только вымыслу мифа, но и видимости чувственного восприятия вещей. От мифа к логосу— так обозначалось то направление пути, которое выбрала античная мысль, осваивая универсум.
Натурфилософия выступила исторически первой формой мышления, направленного на истолкование природы, взятой в ее целостности. Она привнесла собой вместо господствующего в мифологии образа «порождения» идею причинности. В рамках натурфилософии был выдвинут ряд гипотез, сыгравших значительную роль в истории науки, например, атомистическая гипотеза, гипотеза о возникновении порядка из хаоса.
Наметившиеся в натурфилософии два направления в объяснении мира могли быть обозначены как «Многое есть единое» и «Единое есть многое». С точки зрения первого, многообразный природный мир имел в основе некую единую субстанцию и строился из первичных элементов, исрво-
кирпичиков — атомов. С точки зрения второго, единый в своей целостности универсум порождал из себя на протяжении хода развития все многообразие природных явлений. Тем самым натурфилософы поставили для всей последующей философии две важнейшие проблемы: проблему субстанции — вечной и пребывающей основы всего сущего — и проблему движущего принципа — источника всех происходящих изменений. Если на первый вопрос Фалес ответил: «Вода есть основа всего», то с движущим началом, по свидетельствам Аристотеля, Фалес связывал душу. И даже магнит, раз он приводит в движение железо, имеет душу.
Вместе с тем очевидным и существенным стала интенция «направленности во вне», выражающаяся тем, что, формируя идею природы, мысль античных натурфилософов должна была приучиться мыслить то, что вне ее (мысли), что существует независимо от нее, не прибегая к закрепленным в мифологическом сознании приемам антропоморфиза-ции, но лишь двигаясь по логике предмета. Натурфилософское мышление было направлено на объект. При этом, однако, неизвестные действительные связи заменялись «идеальными фантастическими связями», а «недостающие факты — вымыслами». Иначе и быть не могло.
Когда же Аристотель отмечает, что его предшественники «фисиоло-ги», «устанавливая элементы и так называемые начала, хотя и без логических обоснований, но все же говорят о противоположностях (tanantia legoysin), как бы вынуждаемые истиной», он тем самым фиксирует зародыш стихийной диалектики натурфилософов.
Пифагорейцы, связав философию с математикой, поставили вопрос о числовой структуре мироздания. Древнегреческого философа Пифагора — основателя Пифагорейского союза в Кротоне — даже называют «отцом наук». Созданный им союз отличался строгими обычаями, его члены вели аскетический образ жизни. «Самое мудрое — число», «число владеет вещами», «все вещи суть числа» — таковы выводы Пифагора. Единое'начало в непроявленном состоянии равно нулю. Когда оно воплощается, то создает проявленный полюс абсолюта, равный единице. Превращение единицы в двойку символизирует разделение единой реальности на материю и дух и говорит о том, что знание об одном является знанием о другом. Пифагор размышлял х> «гармонии сфер» и считал космос упорядоченным и симметричным целым. Мир был доступен лишь интеллекту, но недоступен чувствам. Математика парадоксальным образом сочеталась с теологией, а теология брала свое начало из математики.
Однако, как отмечает П. Гайденко, в Греции мы наблюдаем появление того, что можно назвать теоретической системой математики: греки впервые стали строго выводить одни математические положения из других, т.е. ввели математическое доказательство»1.
Э л е а т ы, числу которых относятся Ксенофан, Парменид, Зенон и Мелис поставили вопрос о субстанциальной основе бытия и о соотношении мышления и бытия. В своем главном сочинении «О природе» Парменид, вкладывая в уста Дике — богини справедливости — идеи своего философского учения, говорит: «Одно и то же мысль о предмете и предмет мысли». Небытие не существует, потому что оно немыслимо. Ибо сама
мысль о небытии делает небытие бытием в качестве предмета мысли. Сущее есть, не-сущего нет. Сущее бытие есть единое, неизменное и неделимое целое. Истинное бытие умопостигаемо. Все, что временно, текуче, изменчиво, связано с чувственным восприятием. Мышление открывает единство, чувства— множество. Чувственный мир противостоит истинному, как мнение — знанию. Парменидовская постановка вопроса о тождестве мышления и бытия создала предпосылки для научного мышления.
Ученик Парменида Зенон доказывал единство бытия методом от противного. Если существует много вещей, то их должно быть ровно столько, сколько их действительно есть, отнюдь не больше и не меньше, чем сколько их есть. Если же их столько, сколько их есть, то число их ограничено. То, что бытие неподвижно, Зенон пытается доказать, обращаясь к апориям (трудно разрешимым проблемам). Зеноновские рассуждения против движения дошли до нас через «Физику» Аристотеля и впоследствии получили названия: «Дихотомия», «Ахилес и черепаха», «Стрела», «Стадион». В первой, «Дихотомии», утверждается, что движение не может начаться, потому что прежде, чем пройти весь путь, движущийся должен пройти половину. Чтобы дойти до половины, он должен пройти половину половины, а чтобы пройти эту половину, ему необходимо пройти половину половины половины и так без конца. Бесконечно малый отрезок стремится к нулю, но в то же время не исчезает. Его невозможно определить, поэтому движущийся не только не в состоянии пройти весь путь, он не в силах его начать. Этим Зенон пытается доказать, что все движущееся и изменяющееся не может быть мыслимо без противоречия. Физический мир противоречив.
Когда же в опровержение апорий Зенона прибегали к показаниям органов чувств, то и здесь находились весьма остроумные возражения. Эле-атами признавалось, что чувство «видит» движение, но отмечалось, что разум хочет его «понять» и понять не может. Если учитывать, что разум исследует сущность, а чувства— явления и видимость, то, согласно логике элеатов, именно в сущности движения нет. Общепризнанным, однако, считается, что Зенон сумел показать невозможность описания движения непротиворечивым образом. Следовательно, движение есть противоречие. Апории Зенона имеют особую ценность именно потому, что указывают на реально существующее противоречие. Может быть, поэтому в многочисленных древних источниках утверждается, что он родоначальник диалектики. Сам же Зенон считал свои сочинения более защитой тезиса Парменида «все есть одно», нежели противоположной позицией, когда «все есть многое». Он любил говорить, что именно из любви к спорам он написал многие из своих сочинений.
Важность изучения движения осознавалась всеми философами без исключения. Аристотель (Стагирит) считал, что незнание движения ведет к незнанию причин и утверждал, что видов движений и изменений столько же, сколько и видов сущего. «Для количества имеется рост и убыль, для качества— превращение, для пространства— перемещение, для сущности — просто возникновение и уничтожение»2. Следует различать шесть видов движения: возникновение, уничтожение, изменение, увеличение, уменыие-
ние, перемещение. Однако развивая концепцию косной пассивной материи, Аристотель в конечном счете пришел к выводу, что источником движения является некий перводвигатель — чистая форма как начало всякой активности. А значит, движение не атрибут, а модус, частное свойство и признак материи, и задается он не иначе, как посредством первотолчка. Видимо, поэтому в течение последующего продолжительного периода развития философской мысли движение не рассматривалось как атрибут материи. Оно слыло их частным и привходящим свойством.
Сочинение Анаксагора «О природе» начинается словами: «Вместе все вещи были...». Он отвергает стихии в качестве первоначал и выдвигает тезис— «все во всем». Первичными оказываются все состояния вещества, а состояний этих «неопределенное» множество. Анаксагор называет их семенами, Аристотель же дает им название «гомеометрии» т.е. подобночаст-ные. Любая гомеометрия бесконечно делима, неоднородна, подобно целому она заключает в себе все существующее. Однако гомеометрии Анаксагора играют роль материи пассивной, а хаос может развиться в космос лишь при условии активного начала. Таковым у Анаксагора выступает Нус, или Ум. Первоначально он приводит все в круговое движение, затем происходит процесс формообразования. Легчайшее идет к периферии, тяжелейшее падает в центр. Анаксагор — продолжатель рационалистической традиции. Введя в качестве движущего начала ум, он мало его использует. Везде, где возможно, он дает механистическое объяснение, и в его космологии нет «проведения».
Атомистика, к приверженцам которой относились Левкипп, Демокрит, Эпикур и Лукреций Кар, в противовес элеатам, отрицающим небытие, признавала наличие пустоты. Она есть условие всех процессов и движений, но; сама неподвижна, беспредельна и лишена плотности. Каждый член бытия определен формой, плотен и не содержит в себе никакой пустоты. Он есть неделимое (по греч. — «атомос»). Атом тождественен самому себе, но может иметь разную форму, отличаться порядком и положением. Это является причиной разнообразных соединений атомов. Складываясь и сплетаясь, они рождают различные вещи. Даже душа в учении Демокрита состоит из атомов. Тем самым в атомистической картине мира складывается свое объяснение проблемы множественности и находят своеобразное отражение процессы возникновения, уничтожения, движения.
Атомисты, как подмечает А.Н. Чанышев, примирили Гераклита и Пар-менида, признав, что мир вещей текуч, мир элементов, из которых вещи состоят, неизменен-'. Кроме установленных законов сохранения бытия, сохранения движения атомисты провозгласили закон причинности: «Ни одна вешь не происходит попусту, но все в силу причинной связи и необходимости». Случайность, однако, понимается субъективно, как то, причину чего люди не знают.
Достаточно высоко с точки зрения развития научной мысли оценивается и деятельность софистов. Они сосредоточили свое внимание на процессе образования научных понятий, методов аргументации, логической обоснованности и способов подтверждения достоверности результатов рассуждения. Рационализм, релятивизм и скептицизм, а также конкретно
поставленная задача, требующая непротиворечивого доказательства, со времен софистов стали постоянными спутниками научного поиска.
Как отмечают исследователи, античная наука столкнулась с феноменом несоизмеримости и пыталась его освоить. Иррациональные числа указывали на наличие реальности, которая сопротивлялась привычной логике упорядочивания. В истории античной науки известны многочисленные попытки, направленные на то, чтобы освоить несоизмеримость, вписать ее в систему. А. Огурцов, ссылаясь на Паппа, указывает, что Ар-хирей стремился построить арифметику несоизмеримых величин, Театет — расчлененную теорию иррациональных линий. Демокрит написал несохранившийся труд «Об иррациональных линиях и телах»4. Поздние пифагорейцы стремились примирить идею несоизмеримости с принципами упорядоченной структуры космоса. Следующие отсюда выводы выходили далеко за пределы собственно математических построений, ибо доказывали, что есть вещи, не имеющие логоса и пропорции, говорящие от имени Иного.
Однако идея гармонии, симметрии и упорядоченного космоса преобладала. И игнорируя все тонкости и аномалии, которые вносил собой обнаруженный математикой феномен несоизмеримости, за которым скрывалась онтология хаоса, Платон превозносил общественное значение стройного здания математики. «Вот какое отношение имеет математика к управлению государством: она воспитывает возвышенный строй души, научает душу отвращаться от хаотического и беспорядочного мира чувственного (становления) и приобщаться к миру вечного бытия, где царят порядок, гармония, симметрия»5.
Считается, что первую попытку систематизированного отношения к тому, что мы впоследствии стали называть наукой, составляют именно произведения Аристотеля. Например, его книга «Физика» — это не только и не просто физика, но и философия физики. В доказательство, вслед за Ф. Франком, приведем одно из рассуждений Аристотеля: «Естественный путь к этому (то есть к познанию природы) идет от более известного и явного для нас к более явному и известному по природе: ведь не одно и то же, что известно для нас и прямо само по себе. Поэтому необходимо дело вести именно таким образом: от менее явного по природе, а для нас более явного, к более явному и известному по природе». Тем самым (согласимся с Ф. Франком) Аристотель хотел показать, что одной из основополагающих черт научного познания является переход от того, что познается непосредственно, к тому, что доступно пониманию. Возникновение из не-сущего понимается Аристотелем как случайное возникновение. Движение есть переход от потенции к энергии, от возможности к действительности. В «Физике» он рассматривает идею непрерывности. И в бесконечности мышления Аристотель видит главное условия для принятия Бесконечности как таковой, бесконечной протяженности Космоса. В перипатетической физике обосновывается недопустимость пустоты и соотношение математики и физики решается в пользу физики. Не математика должна быть фундаментом для построения физики, а физика может претендовать на значение «базисной», «фундаментальной науки».
В античной философии сложились две концепции, вскрывающие сущность пространства и времени: субстанциональная и реляционная (от relatio — «отношение»). Родоначальники субстанциональной концепции Демокрит (по проблеме пространства) и Платон (во взглядах на время) трактовали пространство и время как самостоятельные сущности, не зависимые ни от материи, ни друг от друга. Демокрит ввел представление о реальном существовании пустоты как вместилища движения атомов. Без пустоты, по его мнению, атомы лишены такой возможности. Пространство, согласно учению Демокрита, Эпикура и Лукреция Кара, объективно, однородно, бесконечно. Оно вместилище совокупностей атомов. Время отождествимо с вечностью — это чистая длительность, равномерно текущая от прошлого к будущему. Время есть вместилище событий.
Противоположное Демокриту понимание пространства было сформулировано Аристотелем. Его взгляды составили суть реляционной концепции. Аристотель отрицает существование пустоты как таковой. Пространство неоднородно и конечно — это система естественных мест, занимаемых материальными телами.
Отвечая на вопрос «Что есть время?», Аристотель рассуждает: как в движении, так и во времени всегда есть некоторое «прежде» и некоторое отличное от него «после». Именно в силу движения мы распознаем различные, не совпадающие друг с другом «теперь». Время оказывается не чем иным, как последовательностью этих «теперь», их сменой, перечислением, счетом, «числом движения в связи предыдущего и последующего».
Эти две тенденции в истолковании пространства и времени— либо как самостоятельных, объективных и независимых от вещественного наполнения начал бытия, либо как неотъемлемых внутренних аспектов движущейся материи — получили развитие в дальнейшем. Более двадцати веков просуществовала первая субстанциональная концепция, подвергаясь лишь некоторым модернизациям и изменениям. Ньютоново пространство, как неподвижное, непрерывное, однородное трехмерное вместилище материи, в сушности, также было и Демокритовым. Время, по Ньютону, однородная, равномерная, вечная и неизменная «чистая» длительность. В классической механике пространство и время— объективные данности, которые все в себя вмешают и ни от чего не зависят. Ньютон говорил об абсолютном времени, которое «само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью».
Представления о пространстве и времени, аналогичные взглядам Аристотеля, развивались в Новое время Лейбницем и Декартом. Ни однородной пустоты, ни чистой длительности как самостоятельных и независимых начал бытия не существует. Пространство — порядок взаиморасположения тел, время — порядок последовательности сменяющих друг друга событий. Протяженность объектов и длительность процессов — не первичные свойства, они обусловлены силами притяжения и отталкивания, внутренними и внешними взаимодействиями, движением и изменением.
Геоцентрическая система Аристотеля—Птолемея основывалась на данных обыденного опыта и здравого смысла. Геоцентризм был принят за незыблемую истину. В «Великом математическом построении астрономии» Клавдий Птолемей столь искусно и математически строго представил движение Солнца, Луны и других небесных светил вокруг неподвижной Земли, что впервые стали возможны сами вычисления движения. Астрономические таблицы на основе труда Птолемея играли огромную роль в практической астрономии на протяжении множества веков.
Общий вывод данной версии весьма тривиален: от философии отпочковались отдельные науки. Или иначе: в рамках классической античной науки, стремящейся, как и в начальной программе натурфилософии, к целостному осмыслению изучаемых явлений, наметились тенденции отделения самостоятельных наук от философии, вычленение их особых предметов и методов.
Версия 2, в которой речь ведется о науке более древней, нежели античность, о науке египетской цивилизации, построена на данных, которые вводятся в обиход значительно реже. Цивилизация Древнего Египта 4-го тысячелетия до н.э. располагала глубокими знаниями в области математики, медицины, географии, химии, астрономии и др. Точка зрения, согласно которой из Древнего Египта пришли основные тайные, оккультные учения, оказавшие сильное влияние на мировосприятие всех рас и народов, и именно из тайного учения заимствовали свои знания и Индия, и Персия, и Халдея, и Китай, и Япония и даже Древняя Греция и Рим, вполне оправдана. Так как почти одновременно возникшие в цивилизации Древнего Египта многообразные области человеческого знания: медицина, химия, астрология, музыка, акустика, риторика, магия, философия, математика, геометрия, анатомия, география и ораторское искусство — имеют самый древний возраст из>всех ныне известных и существующих систем.
Четвертое тысячелетие до н.э. было периодом активного развития Древнего Египта. Основой древнеегипетского хозяйства было ирригационное земледелие. Природно-климатические условия страны, и в частности происходившие с точной периодичностью разливы Нила, обусловили рит-мичнос-гь и цикличность мировосприятия древних египтян. Разливы Нила, от которых он, смешиваясь с почвой, менял окраску и принимал оттенок крови, «оплодотворяли землю и определяли жизнь». От них зависел стабильный ритм жизнедеятельности страны. Геродот называл Египет «даром Нила», подчеркивая этим значение реки в жизни страны. Иногда утверждается, что Египет— это греческое название страны Кем, что в переводе означает «тайна, загадка». Согласно другим данным, египтяне называли свою страну словом Кемет — Черная — по цвету вспаханной земли нильской долины7.
Развитие земледелия повлекло за собой развитие геометрии как землемерия. Возникли и географические, описывающие землю, карты, отвечающие на потребность землемерия — геометрии. Однако это традиционное, исходящее из социальной природы познания объяснение возникновения той или иной области знания. В контексте же египтологии существует версия, со-
гласно которой основные знания точных наук египтянам были переданы от более древней цивилизации. Иногда упоминают об атлантах и Атлантам де. Впрочем, здесь все исторические свидетельства упираются в тупик, имя которому— легенда.
Древнеегипетская цивилизация, датируемая 6-4 тысячелетием до н.э., представлена интереснейшей и во многом необычной на взгляд рационалиста концепцией освоения мира. Географическая изоляция способствовала формированию ее самобытности и уникальности. Вряд ли ее, как и древнегреческую, можно назвать «детством человечества». Напротив, мощь и инаковость древнеегипетской цивилизации поражает и ставит вопрос о масштабах и логике преемственности в культурном развитии человечества. Ведь греки, обязанные своим «древнегреческим чудом» (как именовалась греческая цивилизация) знаниям, вывезенным из Древнего Египта и с Востока, не особенно распространялись об источниках и авторстве. Известно, что даже знаменитый Пифагор изучал священную математику — науку чисел или всемирных принципов — в храмах египетских жрецов. Он даже носил по-египетски пурпурную повязку на лбу. И правильнее было бы говорить о священном знании Древнего Египта, удочерившего Элладу.
По мнению египтолога И. Шмелева, «сегодня можно определенно сказать, что не греки были первооткрывателями фундаментальных законов, на которых держится связь миров. За тысячи лет до талантливых мужей Эллады жрецы Древнего Египта в совершенстве изучили и овладели секретами, которые мы заново открываем в наш стремительный век»8. Египетские математики установили форму отношения длины окружности к диаметру (то самое «им» равно...), производили исчисления с дробями, решали уравнения с двумя неизвестными. Если иметь в виду утверждение, что наука началась тогда, когда начали мерить, то этот критерий приемлем и к науке древнеегипетской цивилизации. Вклад египетской математики в мировую сокровищницу бесценен, несмотря на существующее представление, что потребности в математике не выходили за пределы элементарных, связанных с обыденной жизнедеятельностью. Основой египетской математики считаются единичные дроби. Особое значение придавалось операции сложения, к которой сводятся действия умножения, а также двоичный принцип умножения, который,сейчас выполняют вычислительные машины. Египетские дроби — это всегда единичные дроби. Исследователи делают вывод, что в математике египтян выделяются два принципа: строгая аддитивность и широкое использование естественных дробей.
Действительно, ответ на вопрос, чем же так выделяется, кроме своего бесспорно древнейшего возраста, древнеегипетская культура, найти не просто из-за отсутствия полных и систематических источников. Его можно лишь реконструировать, опираясь на оставшиеся памятники мудрости древних: «Книга мертвых», «Тексты пирамид», «Тексты саркофагов», «Книга коровы», «Книга часов бдений», «Книги о том, что в загробном мире», «Книга дыхания», «Адмуат», а также труды античных авторов Геродота, посетившего Египет в V—VII вв. до н.э., Плутарха (1-Й в. н.э.), оставившего подробный труд «Об Исиде и Осирисе». Имеющийся в распоряжении исследователей Большой папирус Харриса составляет 45 метров в длину.
Формой правления в древнеегипетской цивилизации была фараонская деспотия. Ее с полным правом можно назвать правлением посвященных, ибо главнейшую роль играло жречество. Высший и низший жреческие советы хранили свою науку, делали истину недоступной профанам. Была выработана практика захоронения фараонов. Как «сын» солнца, фараон не мог уйти на тот свет незамеченным. Поэтому строились гигантские пирамиды — места захоронения фараонов, и сама процедура пофебения обставлялась захватывающими и символически значимыми ритуалами. Восемьдесят пирамид, искусно сложенных из огромных, нередко многотонных каменных глыб, осталось в наследство от Древнего Египта.
Однако существует точка зрения, в соответствии с которой предназначение пирамиды как места захоронения фараона— второстепенное и сопутствующее. Пирамиды предназначались прежде всего для последующей деятельности жречества, для осуществления интенсивной и обширной программы тотального управления страной средствами психотехники. Согласно преданиям, могли существовать такие сооружения «Озаряющего Света», в пространстве которых медитативный сеанс мог протекать в высшей степени успешно благодаря усиливающему воздействию био-ритмически структурированного пространства храма. Храм ифал роль синтезатора, генерирующего стационарное поле (внутри оболочки в виде стеновых офаждений и кровельного покрытия), которое позволяло сохранить устойчивую глубину транса'.
Возле пирамиды Хеопса возведено прекрасное и загадочное изваяние — знаменитый сфинкс с львиным телом и человеческой головой. Сфинкс вообще являлся главным символом Древнего Египта. Разгадка тайны сфинкса, смотрящего в никуда, есть одновременно попытка постижения безмерного и бесконечного человеческого микрокосма.
Достигшее необычайных высот строительное искусство включало в себя также глинобитные строения и из сырцового кирпича. Оно сопровождалось развитием металлургии меди, совершенствованием деревообделочного, каменнообделочного и гончарного мастерства. Как отмечает Дж. Бернар10, наши стулья, столы не изменились с тех пор, как их создали первые египетские мастера. Кресла с плетеными сидениями и гнутыми ножками были известны 4500 лет назад. На особом месте находилась обработка папируса, кож и выделка льняных тканей. Изобретение гончарного круга привело к «массовому» производству керамических изделий. На высоте были знания о сплавах и металлах, изобретались и совершенствовались красители, активно использовавшиеся в практической деятельности древних египтян.
Широко описываемые в древнеегипетской мифологии весы были выдающимся достижением хозяйственной практики. Особое значение имело изобретение паруса, ставшего первым шагом в использовании энергии ветра.
Специалист по египетской истории Б. Тураев отмечает, что уже в Древнем царстве (в один из исторических периодов развития египетской цивилизации) не без связи с практикой мумифицирования накопилось много знаний в области анатомии и медицины, которые
обусловили появление врачей различных специализаций: глазных, зубных, хирургов". Древнеегипетские врачи были сведущи в анатомии, знали о существоавнии и функционировании системы кровообращения, изучали роль мозга как центра человеческого тела (паралич ног связывали с повреждением мозга). Они могли делать трепанацию черепа, что является чрезвычайно сложной операцией и в наше время. С легкостью пломбировали зубы, чего не умели делать и в XVIII в. (не зря этот век вошел в историю под названием «щербатый»). Имелись руководства и для ветеринаров. Рецепты доказывают значительные познания в области химии. В Египте существовали и специальные учебные заведения, так называемые «дома жизни». По мнению некоторых ученых, в них составлялись священные книги и велись изыскания в области медицины. Египетские медики поражали точным описанием течения многих болезней. Искусство бальзамирования трупов и изготовления лечебных средств до сих пор поражают своим эффектом. Найденные при раскопках гробниц многообразные хирургические инструменты свидетельствовали о высоком уровне развития хирургии.
Мифология Древнего Египта развивалась на базе достаточно высокой цивилизации и сопровождалась изобретением письменности. Появление письменности трактуется как становление необходимого базиса для науки древнеегипетской цивилизации. Однако дешифровать египетские иероглифы крайне трудно. Некоторые из папирусных свитков, хранящихся в европейских музеях, и по сей день не разгаданы. Можно понять, что в них речь идет о магических операциях, магических текстах, заговорах, заклятиях, но что этим достигается, остается непонятым. К наиболее понятным папирусам относится «магический папирус Гарриса». Его основное содержание составляли заклинания, служащие для защиты живых.
К основателям египтологии причисляют Жана Франсуа Шампильона (1790-1832), которому удалось найти ключ к прочтению древнеегипетских иероглифов. Это позволило говорить о достоверности исторических событий глубокой древности. Первоначально иероглифы применялись для обозначения собственных имен и цифр. Считается, что в Египте благодаря хозяйственной практике система письменности сложилась уже к Раннему царству. Знаки были рисуночными и звуковыми выражениями одной или более согласных. Хотя для каждого отдельного звука был выработан знак, который не читался, но пояснял смысл. Символические изображения переходили в надписи, по своей архаичности весьма трудно расшифровываемые. Иерографическое письмо чаще всего использовалось для монументальных, вырезанных на камне надписей. Для хозяйственных целей применялось скорописное письмо. Этим же шрифтом писали литературные произведения и научные книги.
Астрономия же находила себе применение и в теории солнечных часов, и в математической географии. Древние египтяне знали, что Земля круглая и несется в пространстве, они внесли существенный вклад в астрономию, создав солнечный календарь. Календарь разделял год на три сезона по 4 месяца каждый. Тридцатидневный месяц делился на декады. В
году было 36 декад, посвященных особым божествам, созвездиям. В конце года добавлялось 5 дней. Возникновение календаря также обусловливалось потребностями практической жизнедеятельности — важно было знать периодичность разлива Нила. Наблюдатели заметили, что разлив Нила знаменуется появлением на рассвете после долгого перерыва звезды Сириус. Однако они не привели в соответствие календарный и астрономический год, т.е. не учли високосные годы. Поэтому утренний восход Сириуса расходился с Новым годом на 1день. Через 120 лет эта ошибка стала очень ощутимой. Вместе с тем любопытно отметить, что даже Коперник использовал египетский календарь в лунной и планетной таблицах.
Деление суток на 24 часа — тоже вклад египтян, но весьма своеобразный. Оно не похоже на современное, предполагающее равнозначность — 60-минутность — всех часов суток, что было впоследствии осуществлено под влиянием античной практики, соединенной с техникой вычисления. Египетский счет часов предполагал 10 часов дневных, 12 часов ночных и 2 часа сумеречных. В результате получалось 24 часа неравной продолжительности.
Египтяне создавали карты неба, группировали созвездия, вели наблюдения за планетами. Изобретение календаря и элементов астрономии трудно переоценить. Все эти завоевания древнеегипетской цивилизации были щедрыми дарами для последующего развития культуры всех народов.
Однако трудности в изучении египетских знаний объяснялись тем, что они были тайной, хранимой жрецами, которые строго следили, чтобы сокровенные знания о Вселенной и человеке держать втайне от профанов, но передавать их ученикам, посвященным. Об этом свидетельствуют отдельные фрагменты из «Книги мертвых», в которой строго запрещается совершать при свидетелях описываемые там церемонии, при них не могут присутствовать даже отец и сын покойника. Строго наказывалась каждая попытка завладеть магическими священными книгами, а тем более употреблять их для каких-либо целей. Этим объясняется и ставшее известным изречение древнеегипетский жрецов: «Все для народа, но через народ ничто». И.П. Шмелев делает предположение, что если в Древнем Египте жезлы были инструментами фиксации знания, то не указывает ли их геометрия на шифр, заложенный в самих жезлах? Сравнивая иероглифы и рисунки на уцелевших композициях комплекса древних панелей из захоронения древнеегипетского зодчего Хеси-Ра, можно получить аргументированные свидетельства того, что жезлы являются инструментами соразмерности, а следовательно, представление о них только как о символах знатности неполно. Впрочем, во многом неполна и недостаточна и сама версия о происхождении науки в собственном смысле слова в столь отдаленный период. Хотя аналогии возможны. Корпус посвященных весьма напоминает герметичность деятельности научных сообществ, вход в которые также закрыт для профанов. Принцип наставничества, научного руководства — действующий принцип в процессе подготовки научных кадров. Секретность полученных знаний — требование, весьма актуальное и по сей день с учетом последних разработок в сферах генетики и клонирова-ния. И вся своеобразная система древнейших знаний, погребенная под
толщей мистических иносказаний, интересна тем, что имеет тенденцию к воспроизведению и обнаружению своей значимости в новейших, парадоксальных открытиях информационных технологий.
Версия 3 сообщает о возникновении науки в контексте поздней средневековой культуры. Иногда возникновение науки относят к периоду расцвета поздней средневековой культуры Западной Европы (XII-XIV вв.). В деятельности английского епископа Роберта Гроссетеста (1175-1253) и английского францисканского монаха Роджера Бэкона (ок. 1214-1292) была переосмыслена роль опытного знания.
Знаменитый трактат Гроссетеста «О свете» лишен упоминаний о Боге, но изобилует ссылками на Аристотеля и его трактат «О небе». Гроссетест был комментатором «Первой аналитики» и «Физики» Аристотеля. Он широко использовал его категориальный аппарат. Медиевисты считают Гроссетеста пионером средневековой науки. Ему принадлежат также трактаты «О тепле Солнца», «О радуге», «О линиях угла и фигурах», «О цвете», «О сфере», «О движении небесных тел», «О кометах». Сопровождающее их математическое обоснование связано с символикой цифр: «Форма как наиболее простая и не сводимая ни к чему сущность приравнивается им к единице; материя, способная под влиянием формы изменяться, демонстрирует двойственную природу и потому выражается двойкой; свет как сочетание формы и материи — это тройка, а каждая сфера, состоящая их четырех элементов, есть четверка. Если все числа сложить, — пишет Гроссетест, — будет десять. Поэтому десять — это число, составляющее сферы универсума»12. Гроссетест описывает широко распространенный метод наблюдения за фактами, называя его резолюцией, обращается к методу дедукции, а соединение двух конечных результатов образует, по его мнению, метод композиции.
Источники сообщают много удивительного о персоне Роджера Бэкона, в частности то, что он пытался смоделировать радугу в лабораторных условиях. Ему принадлежит идея подводной лодки, автомобиля и летательного аппарата. Он с огромной убеждающей силой призывал перейти от авторитетов к вещам, от мнений к источникам, от диалектических рассуждений к опыту, от трактатов к природе. Он стремился к количественным исследованиям, к всемерному распространению математики. Однако работы неортодоксального монаха-францисканца были сожжены, а сам он заточен в тюрьму.
Типичный образ средневекового алхимика рисует его за неустанной работой в лабораторных условиях, где он проводит многочисленные опыты и ставит интересные эксперименты в целях добиться трансмутации металлов, отыскать философский камень, эликсир жизни. (Заметим, что смысл слова «эксперимент» не тождественен современному, а означает свойственные средневековым магам попытки или операции комбинирования отдельных единичных процессов.)
В основу эликсира бралось искусственное золото, над получением которого так бились алхимики. Господствовало представление о том, что все металлы представляют собой неосуществленное золото, осуществлению которого требуется огромный период времени. Алхимик стремился уско-
рить процесс «созревания» золота с помощью нагревания раствора из свинца и ртути. Очень распространены были алхимические эксперименты над перегонкой киновари. При ее нагревании выделялась белая ртуть и красная сера. Такое сочетание цветов ассоциировалось со спермой отца и кровью матери. Киноварь, воспринимаемая как некое андрогенное начало, в миросозерцании средневековых алхимиков способствовала бессмертию. Средневековым символом алхимии была совокупляющаяся пара.
Лабораторная алхимия разделяется на придворную и отшельническую. Придворная больше была склонна к механическому достижению эффекта. Отшельническая связывала эффект с необходимостью очищения и медитативными практиками. Вместе с тем имеются сведения, что реальное применение алхимических препаратов, в частности эликсиров жизни, были крайне негативными. В них входили ядовитые вещества — ртуть, мышьяк, свинец. Они вызывали сильные формы отравлений, галлюцинаций, кожной сыпи и других болезненных проявлений. Поэтому неудивительно, что алхимиков преследовали и часто казнили. Хотя положительная часть средневековой алхимии закрепила себя в трактатах по фармакологии.
Алхимические же эксперименты над собственной духовной сферой, так называемая трансмутация души, также была сопряжена со многими опасностями. Ей сопутствовало не только желательное развитие паранормальных способностей, но и серьезные психосоматические расстройства.
Средневековье знало семь свободных искусств — триумвпум: грамматика, диалектика, риторика; квадриум: арифметика, геометрия, астрономия, музыка. Каждый ученый был обязан владеть всеми этими науками-искусствами. В XII—XIII вв. были известны тексты арабоязычных ученых, посвященные естественнонаучным изысканиям, широко употреблялись арабские цифры. Но в науке господствовал схоластический метод с его необходимым компонентом — цитированием авторитетов, что лишало первостепенной значимости задачу по исследованию естества, фюзис, Природы.
Когда проводят компаративистский (сравнительный) анализ средневековой науки с наукой Нового времени, то основное отличие видят в изменении роли индукции и дедукции. Средневековая наука, следуя линии Аристотеля, придерживалась дедукции и оперировала путем заключений из общих принципов к отдельным фактам, тогда как новая наука (после 1600 г.) начинает с наблюдаемых отдельных фактов и приходит к общим принципам с помощью метода индукции. Дедукцию истолковывают иногда и как процесс нисхождения, который начинается от чего-то наиболее общего, фундаментального и.первичного и растекается на все остальное. В такой интерпретации весьма узнаваемо сходство дедукции и эманации, предполагающей истечение из лона порождающего характеристик, особенностей и сущностей более простого порядка.
В рамках же официальной доктрины средневековья главенствуют вера и истины откровения. Разум теряет роль главного арбитра в вопросах истины, ликвидируется самостоятельность природы, Бог, благодаря своему всемогуществу, может действовать и вопреки естественному порядку.
Теологическая ориентация средневековья очень хорошо прослеживается в текстуальном анализе идей великих мыслителей того времени. Так,
в высказывании Тертуллиана (ок. 160 — после 220) отмечается: «...напрасны потуги философов, причем именно тех, которые направляют неразумную любознательность на предметы природы прежде, чем на ее Творца и Повелителя...». Ведь «философы только стремятся к истине, особенно недоступной в этом веке, христиане же владеют ею. <...> Ибо с самого начала философы уклонились от источника мудрости, т.е. страха Божьего»1-1.
Истина оказывалась в полном ведении Божества, так что «христиане должны остерегаться тех, кто философствует сообразно стихиям мира сего, а не сообразно Богу, которым сотворен сам мир», — подчеркивал Августин14. Средневековье пестрило многообразными аргументами и подходами, опровергавшими возможность истинного познания природы вне божественного откровения. Считалось, что знание, перерастающее в науку, — это разумное познание, позволяющее нам пользоваться вещами. Науку необходимо подчинять мудрости, доступной лишь божественному разуму. Говоря о философах, Августин пишет: «Они твердили: «истина, истина» и много твердили мне о ней, но ее нигде у них не было. Они ложно учили не только о Тебе, который есть воистину Истина, но и об элементах мира, созданного тобой...»15.
В особом, преимущественном положении находилась логика, ибо, как справедливо полагал Боэций, «всякий, кто возьмется за исследование природы вещей, не усвоив прежде науки рассуждения, не минует ошибок... Таким образом, размышления о логике заставляют прийти к выводу, что этой столь замечательной науке нужно посвятить все силы ума, чтобы укрепиться в умении правильно рассуждать: только после этого сможем мы перейти к достоверному познанию самих вещей»16. Он понимал логику как рациональную философию, которая служит средством и орудием и с помощью которой получают знание о природе вещей.
Логику как науку о доказательстве в рассуждениях ценил очень высоко Пьер Абеляр, утверждавший, что наука логики имеет большое значение для всякого рода вопросов и что первым ключом мудрости является частое вопрошание17.
Пожалуй, в окончательном виде кредо средневековья было сформулировано пером Фомы Аквинского: «...необходимо, чтобы философские дисциплины, которые получают свое знание от разума, были дополнены наукой, священной и основанной на откровении. <...> Священное учение есть такая наука, которая зиждется на основоположениях, выясненных иной, высшей наукой; последняя есть то знание, которым обладает Бог, а также те, кто удостоен блаженства... Эта наука— теология, к другим наукам она прибегает как к подчиненным ей служанкам»18.
Таким образом, в средневековье оформился специфический и решающий критерий истинности, а именно ссылка на авторитет, которым в контексте средневековой культуры был Бог.
Начало эпохи Возрождения было отмечено подъемом интереса к математике. Известна, например, «Сумма арифметики, геометрии, пропорции и пропорциональности» флорентийского математика Луки Пачоли (ок. 1445 — позже 1509). В ней автор подводил итог всему математическому знанию, а также с новой силой утверждал тезис античного математика
Филолая и других пифагорейцев о том, что математика отражает всеобщую закономерность, применяемую ко всем вещам.
П. Гайденко оценивает средневековую науку так: «...научное знание в средние века имеет характерные особенности. Прежде всего оно выступает как правила, в форме комментария. <...> Второй особенностью средневековой науки является тенденция к систематизации и классификации. Именно средневековье с его склонностью к классификации наложило свою печать и на те произведения античной науки и философии, которые были признаны каноническими в средние века. <...> Компиляторство, столь чуждое и неприемлемое для науки Нового времени, составляет как раз весьма характерную черту средневековой науки, связанную с общей мировоззренческой и культурной атмосферой этой эпохи". Появляется феноменальный принцип двойственности истины, он указывает на две принципиально разные картины мира: теолога и натурфилософа. Первая связывает истину с божественным откровением, вторая — с естественным разумом, базируется на опыте и пользуется индукцией.
Как отмечает В. Соколов, тогдашняя наука сосредоточивалась в двух почти не связанных друг с другом организациях. Одной из них были университеты и некоторые школы, существовавшие уже не один век. Другой можно считать опытно-экспериментальное исследование природы, которое сосредоточилось в мастерских живописцев, скульпторов, архитекторов. Практика создания предметов искусства толкала их на путь экспериментирования. Иногда эта практика требовала соединения логики мастерства с математикой20.
Великий живописец Леонардо да Винчи по праву завоевал имя пионера современного естествознания. Его исследовательская деятельность охватывала собой области механики, физики, астрономии, геологии, ботаники, анатомии и физиологии человека. Леонардо подчеркивал безошибочность опыта и стремился к точному уяснению его роли в деле достижения истины. Он указывал, что опыт есть то минимальное условие, при котором возможно истинное познание. Леонардо ориентировался на спонтанное экспериментирование, которое осуществлялось в многочисленных мастерских. Его широко известная фраза: «Наука — полководец, а практика — солдаты», — говорила о том, что наука не сводится только к опыту и экспериментированию, а включает в себя нечто большее потребность осмысленного обобщения данных опыта. Интересно, что механика мыслится им не как теоретическая наука, какой она впоследствии станет во времена Галилея и Ньютона, а как чисто прикладное искусство конструирования различных машин и устройств. Можно присоединиться к мнению В. Соколова о том, что именно Леонардо подошел к необходимости органического соединения, единства эксперимента и его математического осмысления, которое и составляет суть того, что в дальнейшем назовут современным естествознанием. Постепенное проникновение естественно-научного взгляда на мир подготовило появление классической науки.
Версия 4 наиболее традиционная. Она датирует рождение науки Нового времени в общеупотребляемом европейском смысле слова
XVI— началом XVII в., делая точкой отсчета систему Коперника, так называемый коперниканскии переворот, а также законы классической механики и научную картину мира, основанную на достижениях Галилея и Ньютона.
Польский астроном Николай Коперник (1491-1496) учился в Краковском университете. Затем приехал в Италию для постижения основ астрономии, медицины, философии и права, где изучил древнегреческий язык и космогонические идеи древних авторов. Он рано пришел к убеждению о ложности теории Аристотеля—Птолемея и в своем небольшом произведении «Очерк нового механизма мира» (1505—1507) попытался математически конкретизировать свою идею. Главным делом его жизни был труд «Об обращениях небесных сфер», который был издан после его смерти. В нем Коперник предложил гелиоцентрическую систему мира. С момента провозглашения его идеи, заключающейся в том, что разработанная система позволяет «с достаточной верностью объяснить ход мировой машины, созданной лучшим и любящим порядок Зодчим»21, можно вести отсчет рождения детерминистическо-механистического мировоззрения в его противоположности телеологическо-организмическому. Земля оказалась не привилегированной, а «рядовой» планетой, закономерности которой могли быть обнаружены на всем громадном ее протяжении.
Таким образом, согласно этой позиции наука очень молода, ее возраст чуть более 400 лет. «XVI век н.э. увидел крушение западного христианства и рождение современной науки», — подчеркивал А. Уайтхед в работе «Наука и современный мир». Развитие науки придало новую окраску человеческому сознанию и породило новизну способов мышления. «Новое мышление явилось более важным событием, чем даже новая наука или техника. Оно изменило метафизические предпосылки и образное содержание нашего сознания, так что теперь старые стимулы вызывали новый отклик». О греческих изысканиях Уайтхед отзывался так: «Их чрезмерно интересовала математика. Они изобрели ее основоположения, анализировали ее предпосылки, открыли замечательные теоремы благодаря строгой приверженности дедуктивному рассуждению. Их умы увлекала страсть к обобщению. Они требовали ясных и смелых идей и строгих умозаключений из них. Это было совершенство, это был гений, это была идеальная подготовительная работа. Но это еще не было наукой в нашем понимании»2'.
В аристотелевской и схоластической традиции изложение науки основывалось на схеме, состоящей из двух элементов (диадической схеме): действительность, объективный мир — и картина этого мира, создаваемая учеными. Истина означала согласие человеческого интеллекта с вещами действительного мира. Иногда индукция понималась как то, что позволяет на основе «материала наблюдений» строить структуру лингвистического материала. Работа, связанная с созданием кратких изящных аналитических выражений, является существенной частью успеха науки. Поэтому наука стала пониматься на основе триптической схемы: наблюдаемый объект, творящий ученый и третий элемент— знаки, которыми ученый изображает картину мира. (Впоследствии логические позитивисты
акцентировали именно связь второго и третьего элементов, т.е. отношение между физическими объектами и знаками, или символами. Результат этого соотношения был назван семантическим качеством науки. Отношения же между членами третьего необходимого элемента науки — знаками — составляют логический компонент.)
Существует мнение, что история индуктивных наук есть история открытий, а философия индуктивных наук— история идей и концепций. Наблюдая однообразие в природе, мы приходим с помощью индукции к утверждению естественных законов. Эмпиризм и математическое обобщение стали визитной карточкой науки Нового времени. От имени эмпиризма выступил Фрэнсис Бэкон с его обширной программой эмпирической философии. От имени рационалистического подхода выступил математик Рене Декарт. Впрочем, Гарвей высказался о родоначальнике английского эмпиризма так: «Бэкон занимался наукой как лорд-канцлер». Видимо, имеется в виду, что дело ограничивалось одними только пожеланиями, общей характеристикой задачи и увещеваниями о том, что не следует доверяться случайным восприятиям, а нужно производить методические наблюдения и дополнять их обдуманным опытом. Декарт же был уверен, что серьезная потребность в истине может быть удовлетворена не схоластическими рассуждениями и метафизическими теориями, а исключительно математикой. Эта своеобразная математическая реформа философии заставила признать ясность и отчетливость важнейшими принципами научного метода. Они влекут за собой необходимость количественных определений, тогда как качественные, основанные на чувственном восприятии, по сути своей неясны и смутны.
Обычно называют 1662г., год образования Лондонского королевского общества естествоиспытателей, утвержденного Королевской хартией, как дату рождения науки. В 1666г. в Париже появляется Академия наук. Лондонское королевское общество объединяет ученых-любителей в добровольную организацию, устав которой был сформулирован Робертом Гуком. В нем было записано, что цель общества — «совершенствование знания о естественных предметах, всех полезных искусствах с помощью экспериментов (не вмешиваясь в богословие, метафизику, мораль, политику, грамматику, риторику или логику»). Королевское общество стремилось поддерживать экзальтированный эмпиризм. Работы, выполненные но другим нормам, отвергались. «Вы не можете не знать, — так звучал отказ одному из авторов, — что целью данного Королевского института является продвижение естественного знания в помощью экспериментов и в рамках этой цели среди других занятий его члены приглашают всех способных людей, где бы они ни находились, изучать Книгу Природы, а не писания остроумных людей»2"'.
В XVII в. обозначилась новая роль естествоиспытателя — испытующего естество и уверенного, что божественная «Книга Природы» (метафора, унаследованная из теологии) написана на языке геометрии (Галилей). Ученые галилеевского типа настроены на рациональное прочтение книги природы. «...Хотя к 1500 г. Европа не обладала даже уровнем знаний Архимеда, умершего в 212г. до н.э., все же в 1700г. «Начала» Ньютона были
уже написаны, и мир вступил в современную эпоху, — делал вывод Уайтхед^4.
Главным достоянием Нового времени считается становление научного способа мышления, характеризующегося соединением эксперимента как метода изучения природы с математическим методом, и формирование теоретического естествознания. И Галилей, и Декарт были уверены, что позади чувственных феноменов стоят математические законы. Интерес к решающему эксперименту был «платой за застывшую рациональность средневековой мысли». Достаточно напомнить тот факт, что галилеевс-кий принцип инерции получен с помощью идеального эксперимента. Галилей формулирует парадоксальный образ — движение по бесконечно большой окружности при допущении, что она тождественна бесконечной прямой, а затем осуществляет алгебраические исследования. И во всех интересных случаях фиксируется либо противоречие, либо несоответствие теоретических идеализации и обыденного опыта, теоретической конструкции и непосредственного наблюдения. Поэтому суть научно-теоретического мышления начинает связываться с поиском предметов-посредников, видоизменением наблюдаемых условий, ассимиляцией эмпирического материала и созданием иной научной предметности, не встречающейся в готовом виде. Теоретическая идеализация, теоретический конструкт становится постоянным членом в арсенале средств строгого естествознания. Примерами таких конструктов могут служить понятия математической точки, числа, таблицы, графы, абстрактные автоматы и т.п.
К многообразным приметам возникновения науки относят рост благосостояния и досуга, распространение университетов, изобретение книгопечатания, захват Константинополя, появление Коперника, Васко да Гамы, Колумба, телескопа. Хроника той гениальной эпохи любопытна. Ссылаясь на А. Уайтхеда, заметим, что в начале XVII в., в 1605г., выходят «О достоинстве и приумножении наук» Бэкона и «Дон Кихот» Сервантеса. Годом раньше увидело свет первое издание «Гамлета». Сервантес и Шекспир умирают в один день — 23 апреля 1616 г. Весной того же года Гарвей в Лондонском врачебном колледже представил свою теорию циркуляции крови. В год смерти Галилея родился Ньютон (1642), почти 100 лет спустя после опубликования коперникансТсого «Об обращении небесных сфер». Годом раньше Декарт публикует свои «Метафизические размышления», а двумя годами позже — «Первоначала философии». У истоков новоевропейской науки стоят имена Ф. Бэкона, Гар-вея, Кеплера, Галилея, Декарта, Паскаля, Гюйгенса, Бойля, Ньютона, Локка, Спинозы, Лейбница.
«Современная наука рождена в Европе, но дом ее — весь мир», — так резюмировал процесс бурного роста научных технологий А. Уайтхед.
Версия 5 обсуждает проблему исторического возраста науки с привлечением классификации, когда данный феномен представлен двумя стадиями своего становления, а именно прсднаукой и собственно наукой. Зарождающаяся наука во многом опирается на результаты каждодневного практического опыта, обыденное знание, наблюдения и приметы. Оперирование реальными предметами послужило
непосредственной основой для возникновения идеального плана познания, действий с идеальными объектами.
На этапе собственно науки, к.примеру математики, числа уже не рассматриваются как прообразы предметных совокупностей. Они выступают как самостоятельные символические объекты. И когда появляются теоретические возможности, связанные с превышением сложившихся стереотипов практики, когда эмпирические зависимости строятся и получаются не сугубо практически, а как следствие теоретических постулатов, исследователи фиксируют возникновение стадии собственно науки. Знания предстают не как суммарный исход практических операций, но как рецептура действия с точки зрения всеобщего и необходимого. Следовательно, демаркация между наукой и преднаукой проходит по линии формирования предпосылок научно-теоретического способа исследования. Преднаука — это обобщение эмпирических ситуаций, предписания для практики. Наука— это возникновение научного метода, соединяющего математику с экспериментом. Эвристические и прогностические компоненты научного исследования также свидетельствуют о возникновении собственно науки.
ЛИТЕРАТУРА
1 См.: Гайденко П.П. Эволюция понятия науки. М., 1980. С. 18.
2 Аристотель. Соч.: В4т. М., 1976. Т. 1. С. 288-289.
3 См.: Чанышев А.Н. Курс по древней философии. М., 1981. С. 185.
4 См.: Огурцов А.П. Дисциплинарная структура науки. М., 1988. С. 69-71.
5 Гайденко П.П. Указ. соч. С. 252.
6 Цнт. по: Франк Ф. Философия науки. М., 1960. С. 67-68.
7 См.: История Древнего Востока / Под ред. В.И. Кузнщина. М., 1988. С. 12.
8 Шмелев И.П. Феномен Древнего Египта. Минск, 1993. С. 9.
9 Там же. С. 53-54.
10 БернарДж. Наука в истории общества. М., 1956.
11 ТураевБ.А. Древний мир. М., 1917.
12 История философии. Ростов н/Д.. 1998. С. 111.
13 Тертуллиан. Избранные сочинения. М., 1994. С. 40, 62.
14 Августин. Исповедь. М., 1992. С. 14.
15 Цнт. по: Мир философии: Ч. 1. М., 1991. С. 92.
16 Боэций Д. О высшем благе, или о жизни философа // Вопросы философии.
1994. №5. С. 10. '' Абеляр П. История моих бедствий. М., 1959. С. 121.
18 Фома Аквинский. Теология и наука. Приложение // Боргош Ю. Фома Аквнн-скнй.М., 1975. С. 144-145.
19 Гайденко П.П. Указ. соч. С. 429-433.
20 СоколовВ.В. Европейская философия XV-XVII веков. М., 1984. С. 132.
21 Польские мыслители эпохи Возрождения. М., 1960. С. 42.
22 Уаптхед А. Наука и современный мир // Избранные работы по философии. М., 1990. С. 56-57,62.
23 Философия и методология науки. М., 1994. Ч. 1. С. 44 -47.
24 Уайтхед А. Указ. соч. С. 61.