Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Механические гармонические колебания




Пусть материальная точка совершает пря­молинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало коорди­нат. Тогда зависимость координаты х от времени t задается уравнением, аналогич­ным уравнению (140.1), где s=x:

х=А cos(w0t+j). (141.1)

Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны

Сила F=ma, действующая на колеблю­щуюся материальную точку массой т, с учетом (141.1) и (141.2) равна

F= -mw 20 x.

Следовательно, сила пропорциональна смещению материальной точки из положе­ния равновесия и направлена в противопо­ложную сторону (к положению равнове­сия).

Кинетическая энергия материальной точки, совершающей прямолинейные гар­монические колебания, равна

Потенциальная энергия материальной точки, совершающей гармонические коле­бания под действием упругой силы F, равна

Сложив (141.3) и (141.5), получим форму­лу для полной энергии:

Полная энергия остается постоянной, так как при гармонических колебаниях спра­ведлив закон сохранения механической энергии, поскольку упругая сила консер­вативна.

Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2w0, т. е. с частотой, которая в два раза превы­шает частоту гармонического колебания.

 

 

На рис. 200 представлены графики зави­симости х, Т и П от времени. Так как <sin2a>= <cos2aa>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.

 

Гармонический осциллятор.

 

Гармоническим осциллятором называется система, совершающая колебания, описы­ваемые уравнением вида (140.6):

Колебания гармонического осциллятора являются важным примером периодиче­ского движения и служат точной или при­ближенной моделью во многих задачах классической и квантовой физики. При­мерами гармонического осциллятора яв­ляются пружинный, физический и матема­тический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).

 

Затухающие колебания

Рассмотрим свободные затухающие коле­бания — колебания, амплитуда которых из-за потерь энергии реальной колебатель­ной системой с течением времени умень­шается. Простейшим механизмом умень­шения энергии колебаний является ее пре­вращение в теплоту вследствие трения в механических колебательных системах,

а также омических потерь и излучения электромагнитной энергии в электриче­ских колебательных системах.

Закон затухающих колебаний опреде­ляется свойствами колебательных систем. Обычно рассматривают линейные систе­мы — идеализированные реальные систе­мы, в которых параметры, определяющие физические свойства системы, в ходе про­цесса не изменяются. Линейными система­ми являются, например, пружинный маят­ник при малых растяжениях пружины (когда справедлив закон Гука), колеба­тельный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различ­ные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что по­зволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моде­лирование, в том числе и на ЭВМ.

Дифференциальное уравнение свобод­ных затухающих колебаний линейной системы задается в виде

где s — колеблющаяся величина, описы­вающая тот или иной физический про­цесс, d=const — коэффициент затухания, w0 — циклическая частота свободных не­затухающих колебаний той же колебатель­ной системы, т. е. при d=0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (146.1) рассмот­рим в виде

s=e-du (146.2)

где u=u(t). После нахождения первой и второй производных выражения (146.2) и подстановки их в (146.1) получим

Решение уравнения (146.3) зависит от знака коэффициента перед искомой вели­чиной. Рассмотрим случай, когда этот ко­эффициент положителен:

w2=w20-d2 (146.4)

(если (w2-d2)>0, то такое обозначение мы вправе сделать). Тогда получим урав­нение типа (142.1)

решением которого является функция и=А 0cos(wt+j)

(см. (140.1)).

Таким образом, решение уравнения (146.1) в случае малых затуханий (d2<<w20)

s=A0е-dtсоs(wt+j), (146.5) где А=А 0 е-dt (146.6)

— амплитуда затухающих колебаний

a 0— начальная амплитуда. Зависимость (146.5) показана на рис.208 сплошной линией, а зависимость (146.6) — штри­ховыми линиями. Промежуток времени t=1/d, в течение которого амплитуда за­тухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колеба­ния не являются периодическими и, строго говоря, к ним неприменимо понятие перио­да или частоты. Однако если затухание мало, то можно условно пользоваться по­нятием периода как промежутка времени между двумя последующими максимума­ми (или минимумами) колеблющейся фи­зической величины (рис. 208). Тогда пери­од затухающих колебаний с учетом формулы

(146.4) равен

 

Если A(t) и A(t+T) — амплитуды двух последовательных колебаний, соответству­ющих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его

логарифм

— логарифмическим декрементом затуха­ния; Ne — число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания — постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротно­сти Q, которая при малых значениях лога­рифмического декремента равна

(так как затухание невелико (d2<<w20), то Т принято равным Т 0 ).

Из формулы (146.8) следует, что до­бротность пропорциональна числу колеба­ний Ne, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний линей­ных систем, для колебаний различной фи­зической природы — механических (в ка­честве примера рассмотрим пружинный маятник) и электромагнитных (в качестве примера рассмотрим электрический коле­бательный контур).

1. Свободные затухающие колебания пружинного маятника. Для пружинного маятника (см. § 142) массой т, совершаю­щего малые колебания под действием уп­ругой силы F=-kx, сила трения про­порциональна скорости, т. е.

 

 

где r — коэффициент сопротивления; знак минус указывает на противоположные на­правления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

Используя формулу w0=Ök/m (см. (142.2)) и принимая, что коэффици­ент затухания

d=r/(2m), (146.10)

получим идентичное уравнению (146.1) дифференциальное уравнение затухающих колебаний, маятника:

Из выражений (146.1) и (146.5) вытекает, что маятник колеблется по закону

х=A0е-dtcos(wt+j) с частотой w=Ö(w20-r2/4m2) (см. (146.4)).

Добротность пружинного маятника,

согласно (146.8) и (146.10), Q =1/rÖkm.

 

 

19. Вынужденные колебания,

колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше затухание колебаний в этой системе.

 

В частности, в линейных колебательных системах при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис.). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

 

Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает — наступает резонанс. В нелинейных системах разделение на свободные и В. к. возможно не всегда.

 

 

20. Математический маятник

Математический маятник— это идеализированная система, состоящая из материальной точки массой т, подвешен­ной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тя­жести. Хорошим приближением математи­ческого маятника является небольшой тя­желый шарик, подвешенный на тонкой длинной нити.

Момент инерции математического маятника J = ml 2, (142.8)

где l — длина маятника.

Так как математический маятник мож­но представить как частный случай физи­ческого маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим вы­ражение для периода малых колебаний математического маятника

T=2pÖl/g. (142.9)

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L фи­зического маятника равна длине l матема­тического маятника, то их периоды коле­баний одинаковы. Следовательно, приве­денная длина физического маятника — это длина такого математического маятни­ка, период колебаний которого совпадает с периодом колебаний данного физическо­го маятника.

 

 

21. Физический маятник

Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходя­щей через центр масс тела (рис.201).

Если маятник отклонен из положения равновесия на некоторый угол а, то в со­ответствии с уравнением динамики враща­тельного движения твердого тела (18.3) момент М возвращающей силы можно записать в виде

где У — момент инерции маятника относи­тельно оси, проходящей через точку О, l — расстояние между точкой подвеса и цент­ром масс маятника, Ft=- mg sina» mga — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina»a соответствует малым колебаниям маятни­ка, т. е. малым отклонениям маятника из положения равновесия).

Уравнение (142.4) можно записать в виде

Принимая

w0mgl/J. (142.5) получим уравнение

идентичное с (142.1), решение которого (140.1) известно:

a=a0cos (w 0 t +j). (142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маят­ник совершает гармонические колебания с циклической частотой w0 (см (142.5)) и периодом

Т = 2p/w0=2pÖ J /(mgl)=2pÖ L/g.

(142.7)

где L = J/(ml) — приведенная длина физи­ческого маятника.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), по­лучим

т. е. ОО' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости: если ось подвеса пе­ренести в центр качаний, то точка О пре­жней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится.

 

 

22. Сложение гармонических колебаний одного направления и одинаковой частоты. Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания не­обходимо сложить. Сложим гармониче­ские колебания одного направления и оди­наковой частоты

воспользовавшись методом вращающего­ся вектора амплитуды (см. § 140). Постро­им векторные диаграммы этих колебаний (рис.203). Так как векторы a 1 и А 2 вра­щаются с одинаковой угловой скоростью w0, то разность фаз (j2-j1) между ними остается постоянной.

Очевидно, что уравнение результирую-

 

 

щего колебания будет

х=х 1 2 cos(w0 t +j). (144.1)

В выражении (144.1) амплитуда А и начальная фаза j соответственно за­даются соотношениями

Таким образом, тело, участвуя в двух гар­монических колебаниях одного направле­ния и одинаковой частоты, совершает так­же гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (j2-j1) складываемых ко­лебаний.

Проанализируем выражение (144.2) в зависимости от разности фаз (j2-j1):

1) j2-j1=±2mp (m = 0, 1, 2,...), тог­да A=A 1 +A 2, т.е. амплитуда результирующего колебания А равна сумме ампли­туд складываемых колебаний;

2) j2-j1= ±(2m+1)p (m=0, 1, 2,...), тогда A = │A 1 -A 2 │, т.е. амплиту­да результирующего колебания равна разности амплитуд складываемых коле­баний.

 

23.Биения (Продолжение 22)

Для практики особый интерес пред­ставляет случай, когда два складываемых гармонических колебания одинакового на­правления мало отличаются по частоте. В результате сложения этих колебаний получаются колебания с периодически из­меняющейся амплитудой. Периодические изменения амплитуды колебания, возника­ющие при сложении двух гармонических колебаний с близкими частотами, называ­ются биениями.

Пусть амплитуды складываемых коле­баний равны А, а частоты равны w и w+Dw, причем Dw<<w. Начало отсчета выберем так, чтобы начальные фазы обоих колеба­ний были равны нулю:

Складывая эти выражения и учитывая, что во втором сомножителе Dw/2<<w, найдем

Получившееся выражение есть произведе­ние двух колебаний. Так как Dw<<w, то сомножитель, стоящий в скобках, почти не изменяется, когда сомножитель coswt со­вершит несколько полных колебаний. По­этому результирующее колебание х мож­но рассматривать как гармоническое

 

с частотой w, амплитуда А б, которого изме­няется по следующему периодическому за­кону:

Частота изменения A б, в два раза боль­ше частоты изменения косинуса (так как берется по модулю), т.е. частота биений равна разности частот складываемых ко­лебаний: wб=Dw. Период биений

Tб=2p/Dw.

Характер зависимости (144.3) показан на рис. 204, где сплошные жирные линии да­ют график результирующего колебания (144.3), а огибающие их — график мед­ленно меняющейся по уравнению (144.4) амплитуды.

Определение частоты тона (звука оп­ределенной высоты (см. §158)) биений между эталонным и измеряемым колеба­ниями — наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений ис­пользуется для настройки музыкальных инструментов, анализа слуха и т. д.

Любые сложные периодические коле­бания s=f(t) можно представить в виде суперпозиции одновременно совершаю­щихся гармонических колебаний с различ­ными амплитудами, начальными фазами, а также частотами, кратными циклической частоте w0:

Представление периодической функции в виде (144.5) связывают с понятием гар­монического анализа сложного периодиче­ского колебания, или разложения Фурье.

Члены ряда Фурье, определяющие гармо­нические колебания с частотами w0, 2w0, 3w0,..., называются первой (или основной),

второй, третьей и т. д. гармониками слож­ного периодического колебания.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 746 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.