Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение бегущей волны. Фазовая скорость. Волновое уравнение




Бегущими волнами называются волны, ко­торые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности по­тока энергии. Этот вектор для упругих волн называется вектором Умова (по име­ни русского ученого Н. А. Умова (1846— 1915), решившего задачу о движении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, пере­носимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распро­странения волны.

Для вывода уравнения бегущей во­лны — зависимости смещения колеблю­щейся частицы от координат и времени — рассмотрим плоскую волну, предполагая, что колебания носят гармонический ха­рактер, а ось х совпадает с направлением распространения волны (рис. 220). В дан­ном случае волновые поверхности перпен­дикулярны оси х, а так как все точки волновой поверхности колеблются одина­ково, то смещение x будет зависеть только от х и t, т. е. x=x (х, t).

На рис. 220 рассмотрим некоторую частицу среды В, находящуюся от источ­ника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х= 0, описываются функцией x(0, t)=А coswt, то частица среды В колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источ­ника на т, так как для прохождения во­лной расстояния х требуется время t= x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид

x(x,t)=Acosw(t-x/v), (154.1)

откуда следует, что x (х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегу­щей волны. Если плоская волна распро­страняется в противоположном направлении, то

x(х, t)=A cosw(t+x/v).

В общем случае уравнение плоской волны, распространяющейся вдоль поло­жительного направления оси х в среде, не поглощающей энергию, имеет вид

x(x,t)=Acos[w(t -х/v)+j0], (154.2)

где А= const — амплитуда волны, w — циклическая частота волны, j0 — началь­ная фаза колебаний, определяемая в об­щем случае выбором начал отсчета х и t, [w (t-x /v)+j0]— фаза плоской волны.

Для характеристики волн использует­ся волновое число

k=2p/l=2p/vT=w/v. (154.3) Учитывая (154.3), уравнению (154.2) можно придать вид

x(x,t)=A cos(wt-kх+j0). (154.4)

Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком чле­на kx.

Основываясь на формуле Эйлера (140.7), уравнение плоской волны можно записать в виде

x(x,t)=Aei(wt-kx+j0),

где физический смысл имеет лишь дей­ствительная часть (см. § 140).

Предположим, что при волновом про­цессе фаза постоянна, т. е.

w(t-x/v)+j0=const. (154.5) Продифференцировав выражение (154.5) и сократив на w, получим

dt -(1/v) dx=0, откуда

dx/dt=v. (154.6)

Следовательно, скорость v распростране­ния волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы во­лны, и ее называют фазовой скоростью.

Повторяя ход рассуждений для плоской волны, можно доказать, что урав­нение сферической волны — волны, волновые поверхности которой имеют вид кон­центрических сфер, записывается как

x(r,t)=A0/rcos(wt-kr+j0), (154.7)

где r — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не по­глощающей энергию, амплитуда колеба­ний не остается постоянной, а убывает с расстоянием по закону 1 /r. Уравнение (154.7) справедливо лишь для r, значи­тельно превышающих размеры источника (тогда источник колебаний можно считать точечным).

Из выражения (154.3) вытекает, что фазовая скорость

v=w/k. (154.8)

Если фазовая скорость волн в среде за­висит от их частоты, то это явление на­зывают дисперсией волн, а среда, в кото­рой наблюдается дисперсия волн, называ­ется диспергирующей средой.

Распространение волн в однородной изотропной среде в общем случае описы­вается волновым уравнением — диффе­ренциальным уравнением в частных про­изводных

где v — фазовая скорость, D= д 2/ д x2 + д 2/ д y2 + д 2/ д z2 — оператор Лапласа. Решением уравнения (154.9) является урав­нение любой волны. Соответствующей под­становкой можно убедиться, что уравне­нию (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сфериче­ская волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид

 

 

Эффект Доплера в акустике

Эффектом Доплера называется измене­ние частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. Например, из опыта известно, что тон гудка поезда повышается по мере его приближения к платформе и понижается при удалении, т. е. движение источника колебаний (гудка) относительно приемни­ка (уха) изменяет частоту принимаемых колебаний.

Для рассмотрения эффекта Доплера предположим, что источник и приемник звука движутся вдоль соединяющей их прямой; vист и v пр соответственно ско­рости движения источника и приемника, причем они положительны, если источ­ник (приемник) приближается к приемни­ку (источнику), и отрицательны, если уда­ляется. Частота колебаний источника рав­на v 0.

1. Источник и приемник покоятся от­носительно среды, т.е.vист=vпр=0. Если v — скорость распространения звуковой волны в рассматриваемой среде, то длина волны l= vT=v/v 0. Распространяясь в среде, волна достигнет приемника и вы­зовет колебания его звукочувствительного элемента с частотой

n= v /l= v/(vT)=n 0

Следовательно, частота v звука, которую зарегистрирует приемник, равна частоте n0, с которой звуковая волна излучается источником.

2. Приемник приближается к источни­ку, а источник покоится, т.е. vпр>0, vист=0. В данном случае скорость распро­странения волны относительно приемника станет равной v+v пр. Так как длина во­лны при этом не меняется, то

т. е. частота колебании, воспринимаемых приемником, в (v+v пр )/v раз больше частоты колебаний источника.

3. Источник приближается к приемни­ку, а приемник покоится, т.е. vист>0, vпр=0. Скорость распространения колеба­ний зависит лишь от свойств среды, поэто­му за время, равное периоду колебаний источника, излученная им волна пройдет в направлении к приемнику расстояние vT (равное длине волны Я) независимо от того, движется ли источник или покоится. За это же время источник пройдет в на­правлении волны расстояние v ист T (рис.224), т.е. длина волны в направле­нии движения сократится и станет равной l'=l-vист Т=(v-v ист) Т, тогда

т. е. частота v колебаний, воспринимаемых приемником, увеличится в v/ (v-v ист)раз. В случаях 2 и 3, если vист<0 и v пр<0, знак будет обратным.

4. Источник и приемник движутся от­носительно друг друга. Используя резуль­таты, полученные для случаев 2 и 3, можно записать выражение для частоты колеба­ний, воспринимаемых источником:

причем верхний знак берется, если при движении источника или приемника про­исходит их сближение, нижний знак — в случае их взаимного удаления.

Из приведенных формул следует, что эффект Доплера различен в зависимости от того, движется ли источник или при­емник. Если направления скоростей vпр и vист не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле (159.1) надо брать их проекции на направление этой прямой.

 

Стоячие волны

Особым случаем интерференции являются стоячие волны — это волны, образующие­ся при наложении двух бегущих волн, рас­пространяющихся навстречу друг другу с одинаковыми частотами и амплитудами. Для вывода уравнения стоячей волны предположим, что две плоские волны рас­пространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в кото­рой обе волны имеют одинаковую фазу, а отсчет времени начнем с момента, когда фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распро­страняющейся вдоль положительного на­правления оси х, и волны, распространяю­щейся ей навстречу, будут иметь вид

Сложив эти уравнения и учитывая, что k= 2p/l (см. (154.3)), получим уравнение стоячей волны:

Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты w с амплитудой Аст = | cos(2pх/l)|, зави­сящей от координаты х рассматриваемой точки.

В точках среды, где

2px/l=±mp (m=0, 1, 2,...), (157.3)

амплитуда колебаний достигает макси­мального значения, равного 2 А. В точках среды, где

2px/l=±(m+1/2)p (m=0,1,2,...),

(157.4)

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (A ст=2 А), называются пучностями стоячей волны, а точки, в ко­торых амплитуда колебаний равна нулю (A ст=0), называются узлами стоячей во­лны. Точки среды, находящиеся в узлах, колебаний не совершают.

Из выражений (157.3) и (157.4) полу­чим соответственно координаты пучностей и узлов:

х 0 = ± тl/2 ( m = 0, 1,2,...), (157.5)

хузл=±(т+1/2)l/2 (m=0, 1, 2,...).

(157.6)

Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пуч­ностями и двумя соседними узлами одина­ковы и равны l /2. Расстояние между соседними пучностью и узлом стоячей волны равно l / 4.

В отличие от бегущей волны, все точки которой совершают колебания с одинако­вой амплитудой, но с запаздыванием по фазе (в уравнении (157.1) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоя­чей волны между двумя узлами колеблют­ся с разными амплитудами, но с одинако­выми фазами (в уравнении (157.2) стоя­чей волны аргумент косинуса не зависит от х). При переходе через узел множитель cos (2px/l) меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на p, т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе.

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки за­крепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и об­разует стоячую волну. На границе, где происходит отражение волны, в данном случае получается узел. Будет ли на гра­нице отражения узел или пучность, за­висит от соотношения плотностей сред. Если среда, от которой происходит отра­жение, менее плотная, то в месте отраже­ния получается пучность (рис. 222, а), ес­ли более плотная — узел (рис. 222, б). Об­разование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний противо­положных направлений, в результате чего получается узел. Если же волна отражает­ся от менее плотной среды, то изменения фазы не происходит и у границы колеба­ния складываются с одинаковыми фаза­ми — получается пучность.

Если рассматривать бегущую волну, то в направлении ее распространения пе­реносится энергия колебательного движе­ния. В случае же стоячей волны переноса энергии нет, так как падающая и отражен­ная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. „Поэтому полная энергия результирующей стоячей волны, заклю

 

ченной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происхо­дят взаимные превращения кинетической энергии в потенциальную и обратно.

 

 

28. 29. Средняя скорость и поток молекул основное уравнение молекулярно-кинетической теории идеальных газов

 

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS (рис. 64) и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m 0 v-(-m 0 v)=2m 0 v, где т 0— масса молекулы, v — ее скорость. За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v D t (рис.64). Число этих молекул равно n D Sv D t (n— концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1/3 моле­кул, причем половина молекул (1/6) дви­жется вдоль данного направления в одну сторону, половина — в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1/6nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

D Р = 2 m 0 v1/6 n D Sv D t =1/3n m 0 v 2D S D t.

Тогда давление газа, оказываемое им на стенку сосуда,

p =DP/(DtDS)=1/3nm0v2. (43.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v 1, v 2,..., vN, то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (43.1) с учетом (43.2) при­мет вид

р = 1/3пт0 <vкв>2. (43.3)

Выражение (43.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е — суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m = Nm 0, то урав­нение (43.4) можно переписать в виде

pV =1/3m<vкв>2.

Для одного моля газа т = М (М — моляр­ная масса), поэтому

pV m=1/3M<vкв>2,

где Vm — молярный объем. С другой сто­роны, по уравнению Клапейрона — Мен­делеева, pVm=RT. Таким образом,

RT=1/3М <vкв>2, откуда

Так как М = m0NA, где m0—масса од­ной молекулы, а NА — постоянная Авогад­ро, то из уравнения (43.6) следует, что

где k = R/NA —постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода — 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

<e0) =E/N = m0 <vкв> )2/2 = 3/2kT(43.8)

(использовали формулы (43.5) и (43.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 <e0> =0,

т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (43.8) раскрывает молекулярно-кинетическое толкование температуры.

 

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 1511 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2176 - | 2134 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.