Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Точечные оценки и их свойства




Пусть оценивается некоторый параметр наблюдаемой СВ генеральной совокупности. Пусть из генеральной совокупности извлечена выборка объема по которой может быть найдена оценка параметра .

Например, для нормального закона распределения с плотностью вероятности

параметрами являются математическое ожидание и среднее квадратическое отклонение .

Точечной оценкой параметра называется числовое значение этого параметра, полученное по выборке объема .

 

Например, оценками и могут быть:

и соответственно.

Нетрудно заметить, что оценка являются функцией от выборки, т.е. = .

Так как выборка носит случайный характер, то оценка является СВ, принимающей различные значения для различных выборок. Любую оценку называют статистикой или статистической оценкой параметра

Точностью оценки называют такое число , что . Естественно стремление получить по возможности наиболее точную оценку при данном объеме выборки.

Приведем свойства, выполнимость которых желательна для того, чтобы оценка была признана удовлетворительной.

В силу случайности точечной оценки она может рассматриваться как СВ со своими числовыми характеристиками – математическим ожиданием и дисперсией Чем ближе к истинному значению и чем меньше тем лучше будет оценка (при прочих равных условиях). Т.о., качество оценок характеризуется следующими основными свойствами:

- несмещенность;

- эффективность;

Состоятельность.

Оценка называется несмещенной оценкой параметра , если ее математическое ожидание равно оцениваемому параметру: В противном случае – оценка называется смещенной.

Разность - называется смещением или систематической ошибкой оценивания. Для несмещенных оценок систематическая ошибка равна нулю. Если , то завышает среднее значение

Свойство несмещенности оценки является важнейшим, но не единственным. Существует несколько возможных несмещенных оценок одного и того же параметра. Выбор будет сделан в пользу той из них, вероятность совпадения которой с истинным значением оцениваемого параметра выше. Оценка должна иметь такую плотность вероятности, которая наиболее «сжата» вокруг истинного значения оцениваемого параметра. Нетрудно заметить, что в этом случае она будет иметь наименьшую среди других оценок дисперсию.

Оценка называется эффективной оценкой параметра , если ее дисперсия меньше дисперсии любой другой альтернативной несмещенной оценки при фиксированном объеме выборки т.е.

Оценка называется асимптотически эффективной, если с увеличением объема выборки ее дисперсия стремится к нулю, т.е. при ∞ (индекс в оценке применяется для подчеркивания объема выборки).

Оценка называется состоятельной оценкой параметра , если сходится по вероятности к оцениваемому параметру при ∞. Другими словами, состоятельной называется такая оценка, которая дает истинное значение при достаточно большом объеме выборки вне зависимости от значений входящих в нее конкретных наблюдений.

Справедливо следующее утверждение: если и при ∞, то состоятельная оценка параметра

Оценки, являющиеся линейными функциями от выборочных наблюдений, называется линейными.

Наиболее употребляемыми методами нахождения точечных оценок является метод моментов, метод максимального правдоподобия, метод наименьших квадратов.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 773 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2307 - | 2069 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.