Рис. 4.36 Рис. 4.37
Если же известна температура мокрого термометра tм, равная температуре испарения влаги со смоченной поверхности, то относительная влажность воздуха φв определяется следующим образом. Находят точку 1(рис. 4.37) в пересечении изотермы tм = constс линией φ = 100 %.
Так как теоретический процесс испарения протекает при постоянной энтальпии, то из точки 1по прямой H = const поднимаются до пересечения с изотермой воздуха tв = const. Полученная точка 2и будет отражать состояние влажного воздуха. Кривая φ = const, проходящая через эту точку, является искомой относительной влажностью. Приборы, использующие для нахождения φ температуру мокрого термометра, называются психрометрами.
Основы теплообмена
В промышленности широко используют тепловые процессы в различных установках и аппаратах. К ним относятся котельные установки, отопительные приборы зданий и пассажирских вагонов, промывочно-пропарочные станции, пескосушилки, установки кондиционирования воздуха, рефрижераторные установки, устройства приготовления охлаждающей воды для тепловозных дизелей, а также дистиллята для аккумуляторных батарей и др.
Повышение экономической эффективности отмеченных теплогенерирующих и теплопотребляющих установок связано с вопросами интенсификации теплообмена, улучшения свойств теплопроводящих и теплоизоляционных материалов и теплоносителей, выбора рациональной конструкции теплообменных аппаратов. В основе решения этих вопросов лежит учение о теплообмене.
Под теплообменом понимают перенос тепла от одних частей системы к другим при наличии разности температур между ними. В реальных установках теплообмен является сложным процессом. Например, в топках котлоагрегатов тепловая энергия от горячих газов и факела сначала передается к внешней поверхности труб, затем проходит через стенку трубы и только после этого передается воде, циркулирующей в трубах. По пути теплопереноса от газов к воде имеется несколько участков, на которых протекание процессов осуществляется по различным физическим закономерностям. Обычно рассматриваются три основных способа распространения тепла: теплопроводность, конвекция и из-лучение.
Теплопроводность осуществляется за счет обмена энергии непрерывно движущихся микрочастиц вещества (молекул, атомов, электронов). Частицы более нагретой зоны тела, обладающие большей энергией, передают в контактных взаимодействиях некоторую ее долю частицам с меньшей энергией, таким образом, зона прогрева распространяется внутри тела. При поддержании разности температур на границах тела указанный механизм переноса тепла обеспечивает осуществление непрерывного теплового потока через тело в направлении от большего температурного потенциала к меньшему.
Конвекция происходит в жидкостях и газах за счет перемешивания неравномерно нагретых масс движущейся среды. Чем больше скорость движения, тем интенсивнее конвективный перенос тепла. Как правило, конвекция сопровождается теплопроводностью вследствие контакта частиц с разной температурой. Это явление называется конвективным теплообменом.
Теплообмен излучением представляет собой трехстадийный процесс: испускание лучистой энергии нагретым телом, распространение ее в пространстве в виде электромагнитных колебаний и поглощение ее телами, имеющими меньшую температуру. Обмен лучистой энергией между твердыми телами осуществляется на поверхностях тел, а газы излучают и поглощают энергию всем объемом.
Температурным полем называется совокупность значений температуры t во всех точках тела в данный момент времени:
t = ¦(x, y, z, τ), (5.1)
где x, y, z - пространственные координаты; τ - время.
Уравнение (5.1) описывает трехмерное нестационарное температурное поле, т. е. температура изменяется по всем направлениям и во времени. Это характерно для режимов прогрева или охлаждения тел.
В случае, когда распространение температуры в теле не изменяется во времени, температурное поле называется стационарным:
t = ¦(x, y, z). (5.2)
Если значение температуры изменяется в плоскости, то поле называется двухмерным:
t = ¦(x, y), (5.3)
а если только в одном направлении - одномерным:
t = ¦(x). (5.4)
Изотермическая поверхность - это геометрическое место точек равных температур. Изотермические поверхности не пересекаются между собой, они замыкаются сами на себя или обрываются на границах тела. Изменение температуры в пространстве возможно в направлениях, пересекающих изотермические поверхности. Скорость изменения температуры t по нормали n к изотермической поверхности характеризуется градиентом температуры:
grad t = dt / dn. (5.5)
Градиент температуры есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры.
Количество тепла, передаваемого через изотермическую поверхность площадью F в единицу времени, называется тепловым потоком Q, Дж/с или Вт. Тепловой поток, отнесенный к единице площади поверхности, называется удельным тепловым потоком q = Q / F, Вт/м2.
Теплопроводность
Основной закон теплопроводности, сформулированный французским ученым Ж. Фурье в 1822 г., устанавливает пропорциональность удельного теплового потока температурному градиенту:
q = - l grad t. (5.6)
Знак «минус» показывает противоположную направленность векторов теплового потока и градиента температуры. Множитель l, выступающий в уравнении (5.6) в качестве коэффициента пропорциональности, называется коэффициентом теплопроводности.
Переписав закон Фурье с учетом (5.5) в виде
, (5.7)
получаем выражение для установления физического смысла и размерности коэффициента теплопроводности:
. (5.8)
Отсюда следует, что коэффициент теплопроводности - это количество тепла, которое передается через 1м2 поверхности в единицу времени при градиенте температуры в 1 K/м и имеет размерность Вт/(м×K).
Величина коэффициента теплопроводности l зависит от природы тел и температуры. Наибольшей теплопроводностью обладают металлы. Так, для стали l составляет примерно 50 Вт/(м×K), для алюминия – около 200. Пористые, волокнистые материалы имеют низкую теплопроводность, поэтому используются в качестве теплоизоляции. Например, пробковая пластина имеет значение l на уровне 0,04 Вт/(м×K), шлаковата – 0,07.
Зависимость l от температуры большинства материалов принимается линейной:
l = l0 (1 + bt), (5.9)
где l0 – коэффициент теплопроводности при 0 °С; b – коэффициент, определяемый опытным путем.
Коэффициент теплопроводности металлов (кроме алюминия) и жидкостей (кроме воды) с ростом температуры убывает, а теплоизоляционных материалов и газов – возрастает.