Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Группировка информации в виде таблиц




 

Знакомство с элементами статистики начнем с конкретного примера.

В девятых классах «А» и «Б» измерили рост 50 учеников. Получились следующие результаты:

162, 168, 157, 176, 185, 160, 162, 158, 181, 179,

164, 176, 177, 180, 181, 179, 175, 180, 176, 165,

168, 164, 179, 163, 160, 176, 162, 178, 164, 190,

181, 178, 168, 165, 176, 178, 185, 179, 180, 168,

160, 176, 175, 177, 176, 165, 164, 177, 175, 181.

Данные, собранные в этом списке, являются наиболее полной информацией о проведенном измерении. К сожалению, эта информация трудно «читается». Она не наглядна и занимает много места. А представьте результаты, состоящие не из 50 данных, а из 500, 5000 или из миллионов различных чисел! Например, число и размеры вкладов в Сбербанке России за текущий год или данные о производительности труда на предприятиях какой-нибудь отрасли по всей стране, результаты голосования по всем избирательным пунктам и т. п.

Единственный разумный выход – каким-то образом преобразовать первоначальные данные, получить сравнительно небольшое количество характеристик начальной информации и в дальнейшем оперировать именно с этими, как правило, численными характеристиками. Одна из основных задач статистики как раз и состоит в надлежащей обработке информации. Конечно, у статистики есть много других задач: получение и хранение информации, выработка различных прогнозов, оценка их достоверности и т. д. Ни одна из этих целей не достижима без обработки данных. Поэтому, первое, чем стоит заняться – это статистическими методами обработки информации. Для этого нам будут нужны новые термины, принятые в статистике.

В таблице 2 приведены основные термины статистики. Мы будем использовать термины из первого столбца. Термины из третьего столбца могут встретиться вам в других учебных пособиях или справочниках по статистике.

Таблица 2

Новый термин Простое описание Более научный термин Определение
Общий ряд данных То, откуда выбирают Генеральная совокупность Множество всех в принципе возможных результатов измерения.
Выборка То, что выбрали Статистическая выборка, статистический ряд Множество результатов, реально полученных в данном измерении
Варианта Значение одного из результатов измерения Варианта Одно из значений элементов выборки
Ряд данных Значения всех результатов измерения, перечисленные по порядку Вариационный ряд Упорядоченное множество всех вариант

 

Вернемся к примеру с измерением роста. С некоторым запасом мы можем считать, что рост девятиклассника находится в пределах от 140 до 210 см. Значит, числа 140; 141; 142;...; 208; 209; 210 и образуют общий ряд данных этого измерения. Подчеркнем, что определения в статистике не носят такого же точного характера, как, скажем, определения в геометрии или алгебре. Например, от добавления числа 139 к указанному множеству оно не перестанет быть общим рядом данных. Или же, рост можно было, в принципе, измерять с точностью до миллиметров и тогда общий ряд данных этого измерения давали бы числа 140,0; 140,1; 140,2;...; 209,8; 209,9; 210,0.

Выборка в нашем случае – это данные реального измерения роста, выписанные выше, варианта – это любое из чисел выборки, а ряд данных – все реальные результаты измерения, выписанные в определенном порядке без повторений, например, по возрастанию:

157; 158; 160; 162; 163; 164; 165; 168; 175; 176; 177; 178; 179; 180; 181; 185; 190.

Рассмотрим другие примеры. Допустим, вы записываете номера месяцев рождения своих однокурсников. В таком случае общий ряд данных – это числа от 1 до 12, варианты – это номера месяцев рождения конкретных студентов именно вашей группы, а ряд данных – это все варианты, перечисленные по порядку. В одной группе ряд данных – это 3, 4, 5, 7, 8, 10, 11. В другой группе может получиться другой ряд данных. Например, 1, 2, 5, 6, 8, 9, 11, 12 и т. д.

Пример 2. 30 абитуриентов на четырех вступительных экзаменах набрали в сумме такие количества баллов (оценки на экзаменах выставлялись по пятибалльной системе): 20; 19; 12; 13; 16; 17; 15; 14; 16; 20; 15; 19; 20; 20; 15; 13; 19; 14; 18; 17; 12; 14; 12; 17; 18; 17; 20; 17; 16; 17. Составьте общий ряд данных, выборку из результатов, стоящих на четных местах и соответствующий ряд данных.

Решение. После получения двойки дальнейшие экзамены не сдаются, поэтому сумма баллов не может быть меньше 12 (12 – это 4 «тройки»). Значит, общий ряд данных состоит из чисел 12; 13; 14; 15; 16; 17; 18; 19; 20. Выборка состоит из 15 результатов 19; 13; 17; 14; 20; 19; 20;..., расположенных на четных местах. Ряд данных – это конечная возрастающая последовательность 13; 14; 17; 19; 20.

Перейдем к дальнейшей обработке информации. Составим таблицу из двух строк, в первой из которых будет ряд данных. Каждая варианта из этого ряда какое-то количество раз реально наблюдалась в выборке. Это количество называют кратностью варианты. Вот и поставим во вторую строку кратности соответствующих вариант. Получим таблицу распределения выборки. Вот как она выглядит в примере 1.

 

Варианта           Всего: 5 вариант
Кратность варианты           Сумма = 15 (объем выборки)

 

Если сложить все кратности, то получится количество всех произведенных при выборке измерений – объем выборки. В данном случае объем выборки равен 15.

Далее, при общей оценке данных выборки не очень важно, что, например, варианта 14 имеет кратность 3 из общего объема в 15 данных. Удобнее сказать, что эта варианта составляет или 20% числа всех измерений. Так и поступают, т. е. делят кратности вариант на объем выборки и получают частоты вариант.

.

Частоты всех вариант удобно приписать третьей строкой к уже составленной таблице. Новую трехстрочную таблицу называют таблицей распределения частот выборки. Вот как это выглядит в примере 1. Обратите внимание, что сумма частот равна 1, и так бывает всегда.

 

Варианта           Всего: 5 вариант
Кратность варианты           Сумма = 15 (объем выборки)
Частота варианты Сумма = 1

 

Иногда частоты удобно измерять в процентах от общего объема выборки. Тогда таблицу распределения дополняют еще строкой частот в процентах. Она получается из предыдущей строки умножением на 100%.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 737 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2312 - | 2017 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.