Итак, выборки удобно задавать с помощью таблиц. Но мы знаем, что и для функций есть табличный способ их задания. Таблицы образуют «мостик», по которому от выборок данных можно перейти к функциям и их графикам.
Отложим по оси абсцисс значения из первой строки таблицы распределения, а по оси ординат – значения из ее второй строки. Построим соответствующие точки в координатной плоскости. Получим графическое изображение имеющейся информации – график распределения выборки. Часто, построенные точки для наглядности соединяют отрезками. То же самое можно сделать, заменив вторую строку таблицы распределения ее третьей строкой. Получится график распределения частот выборки. Термин «график распределения частот выборки» чаще заменяют более кратким – многоугольник частот или полигон частот. Собственно, роlуgоп и переводится как «многоугольник».
Пример 3. Постройте график распределения и многоугольник частот для следующих результатов письменного экзамена по математике:
6, | 7, | 7, | 8, | 9, | 2, | 10, | 6, | 5, | 6, |
7, | 3, | 7, | 9, | 9, | 2, | 3, | 2, | 6, | 6, |
6, | 7, | 8, | 8, | 2, | 6, | 7, | 9, | 7, | 5, |
9, | 8, | 2, | 6, | 6, | 3, | 7, | 7, | 6, | 6, |
Решение. Дана выборка объема 40. Ее ряд данных – 2; 3; 5; 6; 7; 8; 9; 10. Оценка в 2 балла встретилась пять раз. Значит, кратность варианты 2 равна 5. Сделав то же для других оценок, найдем их кратности. Они равны 5; 3; 2; 11; 9; 4; 5; 1. Можно себя проконтролировать, вычислив сумму кратностей всех рассмотренных вариант: 5 + 3 + 2 + 11 + 9 + 4 + + 5 + 1 = 40. Частота появления двух баллов равна 0,125 или 12,5%. Вычислив остальные частоты, составляем таблицу и строим графики (см. рис. 6.1).
Варианта | Всего 8 вариант | ||||||||
Кратность варианты | Сумма = 40 | ||||||||
Частота варианты | 0,125 | 0,075 | 0,05 | 0,275 | 0,225 | 0,1 | 0,125 | 0,025 | Сумма = 1 |
Частота (%) варианты | 12,5 | 7,5 | 27,5 | 22,5 | 12,5 | 2,5 | Сумма – 100% |
Рисунок 6.1
По существу, различия этих трех графиков состоят только в выборе единиц измерения и масштаба по оси ординат. Для наглядного оформления (дизайна) информации в каждом конкретном случае приходится выбирать между этими тремя возможностями. Чаще всего в практических приложениях используют многоугольники частот в процентах. Для полноты картины можно было бы приведенные ломаные дополнить еще одной вершиной (4; 0), расположенной на оси абсцисс. Эта вершина соответствует тому, что в данной выборке отсутствует оценка в 4 балла.
Мы видим, что даже для малого объема выборки аккуратное «причесывание» информации – довольно кропотливая вещь. Вот более краткий, но менее точный способ.
Рисунок 6.2
Назовем оценки 2, 3, 4 «плохими», оценки 5, 6, 7 «средними», а оценки 8, 9, 10 «хорошими». Все «плохие» оценки принадлежат отрезку [2; 4], «средние» – отрезку [5; 7], а «хорошие» – отрезку [8; 10] (рис.). Тем самым мы разбили промежуток между самой маленькой и самой большой вариантой на участки и получили интервальный ряд данных: 2 – 4; 5 –7; 8 – 10.
Варианта | «Плохая» | «Средняя» | «Хорошая» |
Для каждого участка сложим кратности вариант, попавших в него. Получим кратности каждого участка.
Варианта | «Плохая» | «Средняя» | «Хорошая» |
Кратность варианты |
Теперь нарисуем три прямоугольника. Основание первого – это отрезок [2; 4], его площадь равна 8, т. е. равна кратности «плохой» варианты. Аналогично поступим с двумя другими вариантами. Получим столбчатую диаграмму, или гистограмму распределения (рис. 6.3).
Рисунок 6.3
Поделив высоты столбиков на объем всей выборки, получим другую столбчатую диаграмму – гистограмму распределения частот (рис. 6.4).
Рисунок 6.4
Как обычно, таблицу можно дополнить и третьей строкой, в которой частоты вариант выражены в процентах:
Варианта | «Плохая» | «Средняя» | «Хорошая» |
Кратность варианты | |||
Частота варианты | 0,2 | 0,55 | 0,25 |
Частота варианты (%) |
На рисунке 6.5 приведена гистограмма распределения частот в процентах.
С одной стороны, в гистограмме потеряна первоначальная точная информация: мы не знаем, например, сколько именно человек получили 6 баллов. С другой стороны, ответ получается более быстро, и наглядно видна качественная оценка распределения данных. Примерно половина абитуриентов получила «средние» баллы, а «плохиши» и
Рисунок 6.5 «хорошисты с отличниками» поделились почти поровну. Для отчетов по результатам экзаменов такой вид исходной информации – в самый раз
Пример 4. Измерили длины слов (количество букв) в приведенном ниже отрывке из поэмы А. С. Пушкина «Медный всадник». Нужно построить гистограммы распределения кратностей и частот, выбрав интервалы 1 – 3, 4 – 6, 7 – 9 для вариант выборки.
«…Ужасен он в окрестной мгле! | 6, | 2, | 1, | 9, | ||
Какая дума на челе! | 5, | 4, | 2, | |||
Какая сила в нем сокрыта, | 5, | 4, | 1, | 3, | ||
А в сем коне какой огонь! | 1, | 1, | 3, | 4, | 5, | |
Куда ты скачешь, гордый конь, | 4, | 2, | 7, | 6, | ||
И где опустишь ты копыта?...» | 1, | 3, | 8, | 2, |
Решение. Справа от текста вместо слов построчно записаны их длины. После подсчета составляем таблицу.
Длина слова | Всего 9 вариант | |||||||||
Кратность | Сумма = 30 |
Для нужных гистограмм составляем таблицу с меньшим числом вариант.
Длины слов | 1, 2 или 3 | 4, 5 или 6 | 7, 8 или 9 | Всего 3 варианты |
Кратности | 5+4+3=12 | 7+4+3=14 | 2+1+1=4 | Сумма = 30 |
Частоты (%) | 46,66 | 13,33 | Сумма ≈ 100% |
Осталось нарисовать гистограммы:
Рисунок 6.6