Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Количество тепла (теплота)




МОЛЕКУЛЯРНАЯ ФИЗИКА

ТЕРМОДИНАМИКА

Авторы: Ольга Николаевна Бомбенко,

Ольга Ивановна Москвич

Введение в термодинамику. Основные понятия. Нулевое начало. Задачи для самостоятельной работы

Термодинамический подход в описании макроскопических систем использует термодинамические величины, относящиеся к системе в целом – макроскопические параметры. В экспериментальных исследованиях устанавливаются связи между этими величинами, в то время как теория строится на некоторых общих положениях и с их помощью объясняет эти связи.

Уравнение, выражающее функциональную связь между макроскопическими параметрами в состоянии термодинамического равновесия, называется обобщенным уравнением состояния системы. Известными примерами уравнений такого рода являются уравнение Клапейрона-Менделеева и уравнение Ван-дер-Ваальса.

Фундамент термодинамической теории образуют четыре постулата.

 

Внутренняя энергия

В общем случае внутренняя энергия системы U зависит от ее температуры Т и занимаемого ею объема V.

Для идеальной системы (системы без межмолекулярного взаимодействия) U зависит только от Т. Например, для идеального двухатомного газа в широком диапазоне температур молярная величина U(T)=5/2RT.

Не относятся к внутренней энергии

 
 

 

 


Термодинамические величины, обладающие свойствами 1, 2, 3, называются функциями состояния или термодинамическими потенциалами.

Внутренняя энергия – функция состояния.

Макроскопическая работа: работа, совершаемая газом.

Газ, находящийся в цилиндрическом сосуде с поршнем (рис.1), действует на поршень, площадь сечения которого s, с силой давления F=ps. Бесконечно малая или элементарная

работа, совершаемая газом при перемещении поршня на dx, равна δA=Fdx=psdx=pdV.

Рис.1

Положительной считается работа, совершаемая газом при расширении: dV>0, δA>0; отрицательной – совершаемая над газом внешними силами при сжатии: dV<0, δA<0.

На диаграмме – pV (рис.2) величина макроскопической работы выражается площадью под кривой, изображающей определенный процесс.

Величина А зависит от способа или «пути», которым перевели систему в данное состояние. Работа по замкнутому контуру не равна нулю.

Рис.2
Работа не является термодинамическим потенциалом.

Количество тепла (теплота)

Теплота Q – это величина, характеризующая взаимодействие систем в форме теплообмена. Теплообмен осуществляется путем передачи внутренней энергии макросистеме от внешних тел как при непосредственном контакте с ними, так и через излучение. Теплота может как сообщаться системе, так и забираться от нее.

Теплота – это энергия в специфической форме, форме хаотического молекулярного движения.

Теплота не является функцией состояния.

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 366 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2255 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.