Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Однородные дифференциальные уравнения первого порядка




Определение

Уравнения вида

, (8.4.1)

называется однородным, если и однородные функции степени .

Понятие однородного дифференциального уравнения связано с понятием однородной функции.

Определение

Функция называется однородной функцией степени , если для произвольного числа выполняется равенство .

Пример

Выяснить, являются ли однородными следующие функции:

а) . Так как , то данная функция однородна степени 2.

б) , . Функция однородна степени 0.

в) , . Данная функция неоднородная.

 

Дифференциальное уравнение вида (8.4.1) можно привести к виду

(8.4.2)

и при помощи подстановки ( – неизвестная функция) преобразовать в уравнение с разделяющимися переменными. Поскольку , то . После того, как общее решение последнего уравнения будет найдено, необходимо вернуться к старой функции .

Пример

Решить уравнение .

Решение

Разделим уравнение почленно на . Получим . Выполним замену . Следовательно, . Подстановка в исходное уравнение дает – уравнение с разделяющимися переменными. Решая его, получим . Возвращаясь к функции , получим общее решение уравнения: .

Логарифмирование решения дает: .

 

Пример

Найти частное решение уравнения в точке .

Решение

Уравнение однородное нулевой степени – или . В результате подстановки получим уравнение с разделяющимися переменными относительно функции : . Интегрирование этого уравнения дает функцию: . Следовательно, общее решение исходного уравнения имеет вид: . Частное решение, соответствующее начальному условию, имеет вид: .

Определение

Дифференциальное уравнение вида

. (8.4.3)

где и – непрерывные функции, называется линейным дифференциальным уравнением первого порядка.

Неизвестная функция и ее производная входят в указанное уравнение линейно, что и объясняет название уравнения.

Если , то уравнение (8.4.3) называется линейным однородным уравнением, если же , то уравнение (8.4.3) называется линейным неоднородным уравнением.

Пусть линейное однородное уравнение.

(8.4.4)

соответствует уравнению (8.4.3). Мы рассмотрим так называемый метод вариации постоянной – метод решения неоднородного уравнения, основанный на предварительном решении однородного уравнения (8.4.4).

Уравнение (8.4.2) можно решить методом разделения переменных:

, откуда .

Потенцируя, получаем общее решение уравнения (8.4.4):

, (8.4.5)

где .

Общее решение неоднородного уравнения (8.4.3) ищем в виде (8.4.5), полагая константу новой неизвестной функцией от аргумента .

. (8.4.5а)

Подставим решение (8.4.5а¢) в уравнение (8.4.3).

,

откуда после приведения подобных получаем уравнение для :

. (8.4.6)

Интегрирование уравнения (8.4.4) дает выражение для : .

Подставляя выражение для в формулу общего решения, получаем окончательное выражение для решения неоднородного уравнения:

, (8.4.7)

где – произвольная постоянная.

Следует отметить, что некоторые нелинейные уравнения приводятся к линейным уравнениям соответствующими заменами неизвестной функции . К таковым относится уравнение Бернулли:

, (8.4.8)

где и – непрерывные функции, а – некоторое постоянное число. При имеем линейное неоднородное уравнение, а при – линейное однородное уравнение .

Пусть и . Введем новую функцию . Тогда . Поделим обе части уравнения (8.4.8) на и умножим на : .

Выполняя замену, получим линейное неоднородное уравнение относительно новой функции : . Метод решения последнего нами уже изучен.

Пример

Решить уравнение .

Решение

Это линейное неоднородное уравнение первого порядка. Сначала решим соответствующее однородное уравнение . Разделяя переменные, получим .

Полагая функцией от и подставляя найденное решение в исходное неоднородное уравнение, получаем после приведения подобных дифференциальное уравнение для : .

После интегрирования этого уравнения и подстановки в уже найденное решение однородного уравнения получим искомое общее решение исходного уравнения: .

Пример

Решить уравнение .

Решение

Опять начнем с однородного уравнения . После разделения переменных и интегрирования уравнения получаем общее решение однородного уравнения . Полагая, что , получаем после подстановки в неоднородное уравнение . Откуда . Стало быть, общее решение исходного уравнения имеет вид .

Пример

Решить уравнение .

Решение

Данное нелинейное уравнение представляет собой уравнение Бернулли при . Заменой искомой функции мы получим линейное неоднородное уравнение относительно : . По формуле (8.4.7) получаем общее решение этого уравнения . Теперь выполняя обратную замену , получаем решение исходного нелинейного уравнения:

Рассмотрим еще один из возможных способов решения линейного неоднородного уравнения (8.4.3) и уравнения Бернулли (8.4.8).

Решение этих уравнений ищем в виде произведения двух функций . Тогда линейное уравнение и уравнение Бернулли сводятся к двум уравнениям с разделяющимися переменными.

Так как , то линейное уравнение (8.4.3) преобразуется к виду .

Найдем сначала какое–нибудь частное решение уравнения . Тогда функция - решение уравнения .

Пример

Решить уравнение .

Решение

Исходное уравнение есть линейное неоднородное уравнение . Пусть , тогда . Следовательно, или . Положим . Проинтегрировав это уравнение, найдем какое–нибудь частное решение этого уравнения . Например, при получаем . Подставляя в уравнение функцию , получим уравнение относительно функции : . Решением этого уравнения с разделяющимися переменными есть функция . Окончательное выражение для решения исходного уравнения имеет вид .

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 352 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2187 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.