Тип датчика | Индуктивность(Гн) | Емкость катуш ки (пФ) | Дополнительная емкость (конденсатора) | ||||||
470 пФ | 680 пФ | 1 нФ | 1.5 нФ | 2.2 нФ | 3.3 нФ | 4.7 нФ | |||
Резонансная частота (кГц) | |||||||||
Fender Stratocaster (1972) | 2.2 | 4.4 | 3.8 | 3.2 | 2.7 | 2.2 | 1.8 | 1.5 | |
Gibson Humbucker | 3.8 | 3.3 | 2.9 | 2.4 | 2.0 | 1.7 | 1.4 | 1.2 | |
Gibson P90 | 6.6 | 2.6 | 2.2 | 1.9 | 1.5 | 1.3 | 1.1 | 0.9 | |
DiMarzio Dual Sound (посл) | 6.4 | 2.7 | 2.3 | 1.9 | 1.6 | 1.3 | 1.1 | 0.9 | |
DiMarzio Dual Sound (парал) | 1.6 | 4.9 | 4.2 | 3.6 | 3.1 | 2.6 | 2.2 | 1.8 | |
Seymour Duncan 59 | 5.0 | 2.9 | 2.6 | 2.2 | 1.8 | 1.5 | 1.2 | 1.0 | |
Fender Jazz Bass | 3.6 | 3.4 | 2.9 | 2.5 | 2.1 | 1.7 | 1.4 | 1.2 | |
Fender Precision Bass | 6.0 | 2.9 | 2.5 | 2.1 | 1.7 | 1.4 | 1.1 | 0.9 | |
Gibson Bass EB 0/1/2/3 | 65.0 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 |
Регулируемый резонанс
Переключателем с различными конденсаторами резонансная частота может меняться только пошагово. Однако возможно и плавное изменение резонансной частоты посредством активного фильтра, который представляет собой не сложную электрическую схему. Первый кто применил подобный фильтр был Alembic since в семидесятых годах, позже это устройство было скопировано другими. Любой, кто владеет навыками схемотехника и радиолюбителя может легко его сделать. Другие же могут приобрести такой фильтр в магазине. Для его установки необходимо свободное место в гитаре и батарейка на 9В.
Измерение частотной характеристики.
Чтобы измерить частотную характеристику датчика, теоретически надо измерить вибрацию струны и сравнить ее с напряжением на выходе в каждой частоте. Фактически же это очень трудно сделать. Как альтернатива, предлагается поместить датчик во внешнее магнитное поле, создаваемое передающей катушкой. При этом в датчике возникает напряжение, т.к. изменяется направление магнитного потока, проходящего через катушки. Поскольку вызванное напряжение в датчике прямо пропорционально изменению магнитной поля в единицу времени, ток проходящий через катушку должен быть обратно пропорционален частоте.
Синусоидальное напряжение проходит в цепь интегратора, производя выходное напряжение, которое обратно пропорционально частоте. Этот сигнал поступает в усилитель и затем в передающую катушку, которая фактически удваивает сигнал и передает его в датчик. Эта катушка может состоять из 50 витков эмалированного медного провода (приблизительно 0.5 мм или 0.002 дюйма в диаметре). Точное число витков не является критичным. Катушку нужно установить рядом с датчиком так, чтобы она излучала в него как можно больше своего магнитного поля. Для синглов магнитные оси должны быть параллельны, а для хамбакеров перпендикулярны.
Чтобы выяснить частотную характеристику подают синусоиды приблизительно от 100 Гц до 10 кГц, и измеряют выходное напряжение датчика широкополосным мультиметром или осциллографом. Абсолютные значения не важны: главное положение резонансного пика над общей амплитудой низких частот. Таким же образом легко исследовать влияние емкостей (например кабелей) и резисторов. Одно из главных преимуществ этого метода измерения - то, что на гитаре не нужно ничего менять и датчики остаются на месте.
Получаемый результат действительно точен только с синглами. Хамбакеры срезают высокие частоты, потому что звук снимается в двух точках одновременно. Высокие обертоны, где на одном полюсе одной и той же волны оказывается пик, а на другом провал, могут взаимоуничтожаться. Эти пики находятся на разных частотах для каждой струны и не могут быть описаны одной кривой. Например, для хамбакера со стандартными размерами пик для шестой струны находится приблизительно на частоте 3000 Гц, а для 5 струны на 4000 Гц. Для высоких струн пик еще выше за частотой среза fg и практически не слышим.
Различия в звуке между синглом и хамбакером часто переоцениваются. Главная причина большого количества высоких частот у сингла - подъем резонансной частоты из-за половинной индуктивности. Снятие звука со струн только в одной точка вместо двух также оказывает влияние, но много меньшее.
Кроме того, этот метод измерения не учитывает нелинейные искажения различных датчиков. На кранче электрогитара с датчиком, у которого высокий выход звучит совершенно по другому чем с датчиком, у которого низкий выход, даже если их частотные характеристики равны. Однако, проверка датчика в этой манере дает полезную информацию относительно его характеристик. С этим знанием, Вы можете найти, какой тип звука наиболее Вам подходит, и Вы можете сами сформировать частотную характеристику внешними конденсаторами и резисторами, чтобы “настроить” датчики под себя и для лучшего сопряжения с декой и струнами.
Создание датчиков
Вы можете сами намотать собственные датчики и в этом нет ничего сложного На рисунке показаны басовый датчик Schaller и демонтированный хамбакер DiMarzio. У последнего магнит горизонтальной поперечной полярности, к которому с обеих сторон примыкают шесть сердечников-винтов диаметром 5mm (3/16″), длиной 16mm (5/8″), которые служат магнитными полюсами датчика. Плоский магнит оказался слишком узким и поэтому к нему с обеих сторон примыкают полоски из мягкого железа. Две катушки закреплены на медной пластине с нижней стороны посредством четырех маленьких винтов. См. следующую страницу на которой даны размеры этого хамбакера с пятью проводами: по два от каждой катушки и пятый для заземления пластины.
Если Вы намереваетесь сделать ваш собственный датчик, сначала сравните стоимость провода и магнитов с готовым датчиком. Мои личные опыты с намоткой моих собственных датчиков в принципе удачные.
Магниты
Поиск подходящих магнитов может оказаться трудной задачей и я сожалею, что не могу предложить какую либо помощь в этом. Есть много изготовителей магнитов, но они обычно продают их только оптом. Можно использовать магниты и катушки от неисправных датчиков, конечно если таковые у Вас есть.
Плоские магниты имеют поперечную горизонтальную полярность, однако, их трудно найти в продаже по одиночке. В своем поиске магнитов, я натолкнулся на изготовителя датчиков Kent Armstrong. Он также продает магниты и был достаточно любезен, чтобы послать мне две пары (которые я использовал для P-90 датчиков, показанных позже). Другим источником таких плоских магнитов может быть Allparts (см. адреса поставщиков).
Если Вы не найдете подходящих магнитов, импровизируйте. Вместо того, чтобы использовать в хамбакере магнит горизонтальной поперечной полярности, Вы можете попробовать установить один плоский магнит вертикальной поперечной полярности под каждой из двух катушек, или использовать шесть коротких стержневых магнитов как показано на странице ниже. Если Вы размещаете магниты так, чтобы на катушках были противоположные полюса, Вам не нужен будет магнит поперечной полярности. Более толстые плоские магниты увеличивают высоту датчика, но они более распространенные. Маленькие стержневые магниты, которые вставлены непосредственно в катушку, относительно легко найти. Фактически, большинство изготовителей датчиков не намагничивают магниты, пока не подготовят их к установке. Для этого, они используют чрезвычайно мощные магниты или специальные устройства для намагничивания с большими конденсаторами, которые позволяют выдавать кратковременный импульс электрического тока высокого напряжения.
Катушки датчиков
Любой может намотать нормальный сингл с магнитами непосредственно в катушке (1). Небольшие магниты АЛНИКО (сплав АЛюминия, НИкеля и КОбальта) для 5 стержневых магнитов, например длинной 20mm, (3/4″), 15mm, (5/8″), и 5mm (3/16″) в диаметре, можно найти в реле, которые легко купить в магазине электроники. Эти магниты как раз подходят под размер, только их надо вставить в две тонких пластины, чтобы намотать катушку сингла. Любой жесткий материал типа текстолита толщиной 1.5mm (1/16″) или 2.4mm (3/32″), фанера толщиной 2mm (3/32″), или какой-нибудь синтетический материал, может использоваться для верхней и нижней частей, синтетика не очень хорошо подходит для этих целей. Я использую фанеру толщиной 2mm, потому что ее очень легко найти. Убедитесь в том, что оставили достаточно места на нижней части, чтобы надежно закрепить провода, лучше использовать маленький зажим или просто узелок как защиту от обрыва проводов. Рисунок 3 показывает типичные формы верхней и нижней частей сингла. Отверстия для крепежа сингла можно будет сделать позже. Также надо просверлить несколько отверстий для выходного провода датчика. В общем сверлите шесть отверстий в обеих частях подходящим по диаметру сверлом под магниты, учитывая интервал. Вклеиваете их суперклеем. Затем оберните один слой изоленты вокруг всех магнитов и прошлифуйте тщательно все грани, т.к. провод очень легко порвать при намотке о заусенцы. Jason Lollar (см. адреса поставщиков), предлагает готовые верхнюю и нижнюю части датчика, сделанные из текстолита. Они стоят приблизительно 3$US за комплект. Рисунок 3 показывает две пары: верхняя, после вклейки 4.8mm x 19mm (3/16″ x 3/4″) стержневых магнитов АЛНИКО, будет нэковым датчиком, а нижняя после вклейки 4.8mm x 19mm (3/16″ x 3/4″) стержневых магнитов АЛНИКО, будет бриджевым датчиком Телекастера. Каждая катушка идет с двумя маленькими контактными площадками, которые служат точками к которым припаиваются провода. Оригинальный бриджевый датчик Телекастера имеет тонкую, железную пластину, приклеенную к его нижней стороне. Пластина спаяна с землей и работает как экран, что также помогает улучшать высокочастотную составляющую.
Материалы для магнитов
АЛНИКО искусственный материал, состоящий из сплава алюминия, никеля и кобальта. В зависимости от соотношения металлов в сплаве и силы, эти магниты имеют разную маркировку: АЛНИКО-5 самый распространенный сплав.
Керамические магниты намного сильнее. При всех равных условиях, керамический магнит обеспечивает более мощный выход. Такие магниты более стойкие к размагничиванию. То, что магнитный материал влияет на звук это очередной миф. Вы можете получить от датчика любой звук с любым магнитом.
Провода
Для намотки катушки применяется очень тонкий, эмалированный, медный провод, около 0.06mm в диаметре (AWG 42). Такой провод можно найти в магазине радиотоваров или в мастерских, занимающихся ремонтом радиоаппаратуры и электродвигателей. Я купил провод прямо у производителя, и он обошелся мне приблизительно в 700 австрийских шиллингов (55US$) за килограмм (приблизительно 2 фунта) 0.06mm провода. Если использовать более толстый провод – Вам не хватит места на катушке для необходимого количества витков, в то же время использование более тонкого провода чрезмерно увеличит сопротивление.
Ориентация магнитов
Если Вы задумали использовать стержневые магниты удостоверьтесь, что все они одинаково ориентированы. Все магниты в катушке должны быть обращены или северным или южным полюсом вверх (в разделенных синглах половина магнитов должна иметь противоположную полярность, чтобы получить эффект хамбакера). Как определять полярность магнитов я объясню позже.
Альтернатива плоскому магниту
Если Вы не нашли плоский магнит, можно использовать шесть прямоугольных или плоских, длиной 12,7mm (1/2″) магнитов как показано на рисунке (a) выше, либо 3 квадратных магнита (b).
Стандарты провода
Большинство оригинальных датчиков намотаны проводом 42 AWG (американский стандарт провода). Для меньших катушек иногда используется провод 43 AWG или еще более тонкий, правда реже, поскольку чем тоньше провод, тем больше его сопротивление и соответственно меньше яркость звука. Кроме того намотка таким проводом датчика буквально висит на волоске.
AWG | Диаметр | Сопротивление | Recommended | напряженность |
0.078 mm | 1.08 Ом/виток(3.5 Ом/м) | 1.9 унций | (53 грамм) | |
0.071 mm | 1.32 Ом/виток(4.3 Ом/м) | 1.5 унций | (42 грамм) | |
0.063 mm | 1.66 Ом/виток(5.4 Ом/м) | 1.2 унций | (33 грамм) | |
0.056 mm | 2.14 Ом/виток(7.0 Ом/м) | 0.9 унций | (26 грамм) | |
0.050 mm | 2.59 Ом/виток(8.5 Ом/м) | 0.7 унций | (21 грамм) | |
0.044 mm | 3.35 Ом/виток(11.0 Ом/м) | 0.6 унций | (17 грамм) | |
0.039 mm | 4.21 Ом/виток(13.8 Ом/м) | 0.5 унций | (13грамм) |
Я наматывал несколько моих первых датчиков проводом 0.036mm - не потому, что хотел этого, а потому что продавец ошибочно продал мне этот провод как 0.06mm (AWG 42), и я использовал его, думая что это AWG 42. пока не измерил диаметр. C тех пор я успешно намотал несколько датчиков не используя тонкий провод, но теперь я могу сказать, что тонким проводом без большой осторожности намотать датчик практически невозможно.
При создании моего первого самодельного датчика, я наматывал шесть катушек вокруг каждого магнита, потому что я не думал, что намотка вокруг каждого магнита своей катушки даст приличный результат. С того времени я пробовал оба метода и рекомендую мотать катушку вокруг всех магнитов, а на разделенных датчиках, сначала вокруг одной половины магнитов, затем вокруг другой половины. Этот метод экономит время и спасает от потенциальных ошибок, поскольку не надо спаивать обмотки между собой. Намотка сингла первым способом, займет у Вас в шесть раз больше времени, чем вторым.
Крышки датчиков
Ваш самопальный датчик будет выглядеть профессионально если Вы поместите его в фирменный корпус. Такие корпуса, винты и пружины, продаются в магазинах как запасные части. Размеры Вашего датчика должны соответствовать размерам крышки. Но конечно же Вы можете и сами сделать крышку для датчика например из дерева с красивой фактурой.
Намотка датчиков
Для намотки катушек я использую деревянную дощечку (подложку), которая крепится на болте диаметром 6mm (1/4"). Катушка может быть закреплена на подложке либо двусторонним скотчем, либо маленькими гвоздями или саморезами (1). Большинсво датчиков имеет только одно установочное отверстие верхней части, однако его достаточно для закрепления катушки.
Вращение может создать небольшой электродвигатель или электродрель, которая наиболее подходит в комбинации с ножным выключателем-регулятором скорости. Для начала установите самую низкую скорость, дрель следует установить так, чтобы она находилась подальше от тела и была бы жестко зафиксирована на столе (1), при этом, бобина с проводом размещается на полу - как на рисунке (2). С делайте несколько витков вручную, а конец провода закрепите на каркасе катушки липкой лентой. В качестве альтернативы можно сразу припаять конец провода на контактную площадку. После этого включите дрель направляя провод рукой и сделайте несколько витков. Когда Вы почувствуете себя уверенными, зафиксируйте кнопку на дрели и продолжите намотку, направляя провод сначала одной рукой (3), затем обеими руками (4). Провод легко сходит с бобины. Для того, чтобы провод не порвался, края бобины должны быть гладкими, без заусенцев. Этот простой метод хорошо себя зарекомендовал. Не натягивайте чрезмерно провод, трения между вашим большим и указательный пальцами достаточно для этого, перемещать его медленно и равномерно от одного края катушки к другому. Если Вы намотали провод на грани, немедленно остановите дрель и смотайте его обратно. Для сингла надо помещать витки, аккуратно параллельно друг другу вокруг катушки (виток к витку); фактически это невозможно сделать без соответствующего оборудования. Самые первые датчики мотались вручную не очень аккуратно, но сейчас намотка выше всяких похвал. Когда я мотаю датчик, я лишь стараюсь что бы катушка заполнялась проводом равномерно без явных бугров и ям, только у краев нужно быть очень осторожным.
Будьте осторожны, провод может легко порваться. Если это случилось вначале, лучше смотать провод назад, выбросить его и начать снова. Если в середине, либо сделайте то же самое и начните с начала, либо спаяйте его. Если Вы хотите сделать последнее, скрутите вместе приблизительно от 10 до 20mm (от 1/2″ до 3/4″) концов проводов, нагрейте эту область паяльником, пока соединение не начинает блестеть и после этого паяйте. Когда провод нагревается, покрытие испаряется. Можно зачистить концы первым номером наждачной бумаги и затем скрутить их вместе. Это конечно очень тонкая работа, и хотя нет к сожалению никакой возможности проверить сделанное соединение, это должно сработать. Прежде, чем продолжить намотку, снова сделайте несколько витков вручную. Так или иначе, я убежден, что с большой осторожностью и некоторой практикой Вы сможете намотать весь провод без обрывов и все эти инструкции для Вас окажутся ненужными.
Со временем, как станете более уверенными, Вам вероятно захочется увеличить скорость вращения дрели. Этого делать не стоит, будьте терпеливыми и не прыгайте выше головы. Максимальная скорость, которую я использую - 10 оборотов в секунду. На этой скорости намотка 6000 витков занимает приблизительно 10 минут. Вам нужно будет максимально сконцентрироваться в этот короткий промежуток. Намотка при большей скорости снижает контроль за качеством работы. Я также рекомендую, чтобы Вы использовали яркий свет, чтобы уменьшить напряжение Ваших глаз. В зависимости от наклона Вашей головы, восприятие (видимость) провода меняется. Когда Вы приближаетесь к концу, дрель выключаете заранее, поскольку после выключения она еще продолжит вращаться в течение короткого времени по инерции. Последние витки можно сделать вручную и они должны всегда проходить у нижней части датчика.
Для более глубокой информации относительно намотки датчиков я рекомендую книгу, написанную американцем Jason Lollar. Он дает точные размеры стандартных катушек датчиков, объясняет как их сделать и описывает, как построить удобный станок для намотки датчиков (см. ссылку в перечне используемой литературы).
Когда желательное количество витков намотано и намотка закончена, пробил час истины. Обрежьте провод и снимите законченную катушку (1). Если Вы еще не припаяли оба конца провода к контактным площадкам (2) и не припаяли к ним выходные провода (3), сделайте это теперь. Если необходимо, удалите изоляцию небольшим количеством наждачной бумаги; когда цвет провода изменился - изоляция снята. Также Вы можете избавиться от изоляции способом, которым я использую – паяйте провода пока изоляция не сгорит. После этого установите переключатель на мультиметре в замер сопротивления менее 100к и присоедините к проводам датчика. Если мультиметр показывает число, катушка работает. Если показывает “бесконечность” или “OL”, то либо обрыв в проводе, либо короткое замыкание, остается маленькая надежда в непропайке проводов (в случае бесконечного сопротивления). Если не помогло – сматывайте весь провод в мусорку и начинайте все с начала. Если катушка работает, пометьте концы (S=start, E=end) и закрепите выходные провода (4).
Подсчет витков
Для сингла подсчет витков, чтобы знать точное количество витков, в принципе не важен – мотайте катушку пока полностью не заполните ее проводом. Математические вычисления здесь не помогут - только законченный датчик покажет свои звуковые качества. Однако не следует забывать, что чем больше витков, тем больше сопротивление и менее яркий звук.
В некоторых случаях точное число витков действительно имеет значение, например при намотки катушек хамбакеров, у которых обе катушки должны быть идентичны, по этому надо найти способ подсчета количества витков. Во-первых можно соединить катушку с счетчиком ленты старого магнитофона или спидометра велосипеда. Если счетчик имеет только три цифры, каждый новый цикл, когда появляется “000″ надо помечать. Я использую счетчик с четырьмя цифрами (1), который связан с катушкой пассиком. Если диаметры проводов на счетчике и намоточном устройстве совпадают, количество оборотов отображается на счетчике 1 в 1.
Другие счетчики имеют рычаг, который с каждым витком перещелкивает цифры на счетчике (2).
Сколько витков?
Количество витков зависит от провода, который Вы используете и звука, который Вы хотите получить. Рекомендация: при использовании провода AWG 42: надо приблизительно 8000 витков для сингла и приблизительно 5000 витков для каждой катушки хамбакера.
Чтобы уравнять выходы некового и бриджевого датчиков бриджевые синглы должны иметь больше витков (например 8200) чем нэковые (например 7800). Нэковые хамбакеры должны иметь 4500 витков в каждой катушке а бриджевые 5000 витков.
Сборка датчика
Раздельный басовый датчик (рисунок справа): магниты толще и длиннее чем обычно. Под каждую струну два стержневых магнита.
После намотки приблизительно 10000 витков датчик P-90 (рисунок справа) показывает сопротивление 10к, а оригинальный Р-90 8.3к. Его плоские магниты имеют поперечную полярность.
Немного физики
В то время как датчик был в сосуде с воском, я замерил омметром его сопротивление и заметил что оно повысилось: холодный датчик показывал сопротивление 10к, горячий датчик показал 12.57к.
Из этого следует, что электрическое сопротивление зависит от температуры.
Поскольку воск чрезвычайно огнеопасен, я рекомендую, чтобы Вы пропитывали ваши датчики в безопасном месте на открытом воздухе и держали под рукой крышку, чтобы быстро закрыть сосуд в случае возгорания. Всегда используйте термометр, чтобы держать температуру не более 65° градусов по Цельсию (150° по Фаренгейту). Так как парафиновые газы могут легко загореться, даже не думайте нагревать воск в микроволновой печи.
Пропитка датчиков
Микрофонный эффект появляется тогда, когда витки катушки в датчике лежат не плотно и ведут себя подобно мембране микрофона, производя дополнительный переменный ток и таким образом делая датчик, восприимчивым к обратной связи или заставляя его передавать внешние шумы и удары по деке и корпусу датчика. Чтобы зафиксировать провод в катушке, погрузите намотанную катушку в горячий, жидкий воск температурой не более 65° по Цельсию (150° по Фаренгейту). При этой температуре, датчик не деформируется. Для этого идеально подходит так называемая водяная баня. Я помещал металлическую кружку в воду в емкости, которую ставил на электроплитку (5).
Для пропитки датчиков используйте смесь парафина и воска. Чистый парафин слишком ломкий, а чистый воск имеет слишком низкую точку плавления. Добавляя одну часть воска к четырем частям парафина, Вы получаете подходящую смесь. Постоянно контролируйте температуру термометром. Поскольку воск обычно горячее ближе к стенкам сосуда и на дне, нужно этих мест избегать. Поместите маленькие деревяшки на дно сосуда для того, что бы обезопасить датчик от вступления в контакт с дном и стенками. Оставьте датчик в ванне с воском в течение 10 - 20 минут, до прекращения выделения из датчика воздушных пузырьков. Для защиты глаз работу проводите в защитных очках.
Катушки в корпусе также можно залить эпоксидной смолой. Но этот вид обработки имеет одно неудобство – вытащить катушку из датчика в последствии будет невозможно. Кроме того эпоксидная смола не проникает между витков обмотки как воск, она только фиксирует наружные стороны катушки. Воск также легко удалить, нагревая датчик. Погружение датчика в воск – экологически-чистый метод, используемый большим количеством производителей.
Схемы распаек пассивных датчиков
Электрические схемы изображают схематически фактическую распайку
Схема распайки на рисунке 2 показывает как распайка работает, в то время как рисунок 3 показывает фактическую распайку в гитаре и может быть полезнее при пайке элементов.
До сих пор я рассматривал датчик в отдельности от всего остального. Как только Вы соедините датчик с чем-нибудь, образуется электрическая цепь, которая меняет характеристики датчика. Самая простая форма электрической цепи - датчик, непосредственно связанный с гнездом выхода (1) и усилителем, на котором регулируется громкость и тембр. В этой электрической цепи звук датчика определяет только сопротивление шнура, сопротивлением входа усилителя и, прежде всего, емкостью гитарного кабеля.
Схема с потенциометром громкости (2,3) - другой пример простой электрической цепи, которая устраивает большое число гитаристов, которых изобилие всяких выключателей, датчиков и множество их комбинаций пугает своей сложностью и отвлекает от игры. Потенциометр громкости на гитаре позволяет исполнителю регулировать громкость звука, не бегая постоянно к усилителю. Кроме этого он также служит для согласования выхода гитары с входом усилителя, который очень чувствителен к разного рода отклонениям. Когда подвижный контакт потенциометра выкручен на полную громкость, в сторону лепестка, к которому припаян сигнальный провод датчика, электрический ток не протекает через дорожку сопротивления потенциометра и поэтому проходит без ослабления. При перемещении подвижного контакта потенциометра к противоположному лепестку, который соединен с общим проводом, сигнал ослабевает, и в конце концов пропадает.
Потенциометр громкости также оказывает влияние на звук датчика. Обычно, с синглами устанавливаются потенциометры сопротивлением 220к или 250к, а с хамбакерами 470к или 500к, но это - также вопрос вкуса. Потенциометры громкости не освобождены от неприятных побочных эффектов, хотя подвижный контакт потенциометра и имеет связь (через сопротивление потенциометра) с общим проводом, часть высоких частот срезается. Эта типичная особенность электрогитар - включение потенциометра громкости заставляет звук стать более глухим, вследствие того, что на высоту резонансного пика, который и делает звук ярким, помимо индуктивности датчика и емкости кабеля, влияет сопротивление потенциометра.
Эта проблема среза высоких становится еще острее, когда потенциометр подключен неправильно (4). По мере уменьшения громкости, катушка все более и более заземляется, пока в конечном счете полностью не замыкается с общим проводом. Что при этом происходит с резонансным пиком объяснять я думаю не надо.
Выходные гнезда
Стандартное гнездо, используемое в электрогитарах - 6.35mm (1/4″). Поскольку этот тип гнезда также используется как входное гнездо в усилителе, оба штекера на концах стандартного гитарного кабеля одинаковы, чтобы не имело значения, какой из них включен в гитару, а какой в усилитель.
Моно гнезда имеют два контакта (1), один из которых связан с корпусом, другой с контактным лепестком. Когда штекер включен в гнездо, его наконечник специальной формы вступает в контакт с контактным лепестком гнезда, в то время как другая часть вступает в контакт с корпусом (2). На открытых гнездах это хорошо видно. На изолированных, пластмассовых гнездах контакт, расположенный ближе к входу - общий. Некоторые гнезда также имеют дополнительные контакты, которые можно использовать в качестве выключателя (4). Они активизируются, когда вставлен штекер. Стерео гнезда и стерео штекеры имеют дополнительно третий контакт (3).
Типы потенциометров
(5) Стандартный потенциометр
(6) Стерео потенциометр: два подвижных контакта на две
дорожки сопротивления перемещаются одновременно одним движком.
(7) Слайдер (продольный потенциометр): подвижный контакт перемещается по прямой линии по дорожке сопротивления. Этот тип не используется на электрогитарах.
(8) Крепежные гайки
(9) Потенциометр с более тонким движком.
Правила схемотехники
Общий провод – самый обычный элемент в электрических схемах. Электрическая схема позволяет изобразить схематически, для облегчения прочтения, соединения проводов и элементов, Элементы и в частности общий провод (11) изображаются символами, а проводники - линиями. Такое отображение земли особенно полезно для сложных электрических схем, иначе хитросплетение общих проводников сильно загромоздит схему. В реальной же распайке все общие контакты должны быть спаяны между собой и с общим контактом гнезда.
Соединение проводников на электрической схеме представляется в виде жирной точки (12).
Два провода, пересекающие друг друга без связи часто представляются двумя пересекающимися линиями без точки (13), а в американских схемах как на рисунке (14).
Потенциометры
Громкость звука гитары (Volume) регулируется вручную при помощи переменного резистора с тремя выводами названного потенциометром. Два крайних вывода соединены с дорожкой сопротивления, а средний с подвижным контактом, который перемещается движком по дорожке сопротивления, таким образом изменяя сопротивление. Линейные потенциометры изменяют сопротивление равномерно: например, когда подвижный контакт находится в среднем положении, сопротивление равно половине общего сопротивления потенциометра. Аудио потенциометры, или логарифмические потенциометры, являются специальным типом потенциометров, в которых изменение сопротивления происходит по экспоненте. Этот тип потенциометров часто используется для регулятора громкости и тембра, потому что они создают впечатление постепенного изменения громкости или тембра. Конечно можно использовать и линейные потенциометры, в конце концов, это дело вкуса. Линейные потенциометры обычно обозначаются литерой A, а логарифмические литерой B. Таким образом потенциометр 250кA линейный, а 250кВ логарифмический. (На самом деле сейчас наоборот: английской буквой А обозначают логарифмические потенциометры (audio), а буквой B – линейные. Это ошибка не переводчика, а автора статьи)
Представление резистора или потенциометра в электрический схеме разное. В Германии, в которой я живу, символ резистора по DIN - маленький прямоугольник; потенциометр представлен стрелкой поперек прямоугольника (DIN – немецкий промышленный стандарт). Американский стиль более наглядный, но также и более сложный для рисования. В этой книге я использую гибридное представление.
Конденсаторы
Конденсаторы образуют препятствие для прямого прохождения постоянного электрического тока, но позволяют свободно течь переменному току. Конденсатор состоит из двух пластин, разделенных слоем диэлектрика и помещены так близко друг к другу, что чередование токов нагрузки - типа переменного тока – заставляет их влиять на друг друга. Сопротивление конденсатора малое на высоких частотах и большое на низких, по-другому, конденсатор пропускает больше высоких частот, чем низких. Конденсаторы - компоненты электрической цепи, которые могут использоваться как частотный фильтр. Чем выше номинал, тем ниже частоты, которые пропускает конденсатор. Конденсаторы низкого номинала могут быть слюдяными или керамическими. Емкость измеряется в пикофарадах (пФ, pF), нанофарадах (нФ, nF) или микрофарадах (мкФ, mF, μF). 1нФ = 1000пФ, и 1000нФ = 1 мкФ (то есть 0.001 мкФ = 1нФ = 1000пФ). К сожалению, емкость, написанная на конденсаторе, слишком часто ошибочно трактуется. На большинстве из них Вы найдете вообще только числа, а признак единицы емкости будет полностью отсутствовать. Номинал таких конденсаторов можно предположительно определить исходя из их размеров. В принципе это не сложно при наличии здравого смысла. Число “1000″, написанное на маленьком конденсаторе, по всей вероятности, будет означать 1000пФ (=1 нФ). “1E3″ также будет 1000пФ. И наконец “.001″, сокращение для 0.001 мкФ, или 1нФ. Кроме того, некоторые мультиметры позволяют измерять емкость.
Другая маркировка - три цифры, написанные на конденсаторе, первые две из них, обозначают емкость в пикофарадах (пФ), а третья цифра число нолей: “503″ – 50 пФ + три ноля = 50000пФ = 50нФ = 0.050мкФ
Переключатели
Переключатели – устройства, которые размыкают-замыкают электрическую цепь механическими средствами. Они могут также использоваться, чтобы изменить направление прохождения сигнала. Переключатели делятся по числу выводов и положений. Самый простой тип переключателей – ON-OF Switch (вкл-выкл) (SPST = два вывода, два положения: включено – выключено, реализован в виде тумблера или кнопки). Рисунок (1) - обозначение на схеме выключателя.
Переключатель ON-ON Switch (вкл-вкл) (SPDT = три вывода, два положения: включено-включено (2), средний контакт попеременно соединяется с одним из двух других. Таким образом сигнал может быть направлен по одному из двух путей.
Переключатель ON-OF-ON Switch (вкл-выкл-вкл) три вывода, три положения (3), в среднем положение никакие контакты не замыкаются. Такой переключатель позволяет включить два конденсатора параллельно датчику.
Переключатель ON-ON-ON Switch (вкл-вкл-вкл) является специальным типом переключателей, который работает как показано на рисунке 4. Три вывода, три положения. В среднем положении все выводы замкнуты.
Многовыводной переключатель позволяет замыкать несколько контактов одновременно. Таким образом двухпозиционный (DPDT) переключатель (5) работает подобно двум выключателям SPDT (2), помещенным рядом и активизируемым одновременно, или трем выключателям SPDT с тремя выводами, активизированным одновременно.
Если Вы не знаете как работает тот или иной переключатель, проверьте его омметром.
Срез высоких частот, вызванный потенциометром громкости может быть уменьшен, применением конденсатора (1). Подходящая емкость подбирается экспериментальным путем. Типичная емкость конденсатора 0.01мкФ. Поскольку ток всегда выбирает путь наименьшего сопротивления, более высокие частоты сигнала будут проходить через конденсатор без потерь. Это - лучший способ устранить проблему потери ВЧ на потенциометре. Для хамбакеров соединенных с потенциометром сопротивлением 500к наилучшем является применение конденсатора емкостью 0,001мкФ и резистора сопротивлением 150к подключенных параллельно (2), а параллельно подключенный датчик, нагруженный при таком подключении сопротивлением приблизительно в 300к, выдает звук, сбалансированный по всему диапазону регулировки. С синглами и потенциометрами сопротивлением 250к применяют конденсатор емкостью 0.0025мкФ и резистор 220к, которые позволяют передавать тембр звука без изменения на малой громкости. (Я бы не советовал применять описанные тонкомпенсирующие цепочки (рис. 1 и 2), практика показывает, что при активной игре с регулятором громкости они очень сильно мешают)
Конденсаторы для регулировки тембра. (3)
Меньшее сопротивление потенциометра по сравнению с конденсатором ведет к тому, что часть высоких частот сигнала гитары уходит в землю, не достигая выхода. Большинство музыкантов выкручивают потенциометры тембра на минимум, что бы высокие частоты меньше срезались, не позволяя звуку становиться глухим. В качестве регулятора тембра рекомендуется использовать логарифмический потенциометр.(несмотря на рекомендации автора подавляюще большинство производителей ставят на тембр линейные потенциометры – может, они просто статью не читали;-)) Для регулировки тембра обычно применяются конденсаторы с емкостями 0.047мкФ или 0.05мкФ (47нФ и 50нФ соответственно) для синглов и 0.02мкФ (20нФ) для хамбакеров, но конечно можете поэкспериментировать с различными емкостями.
Если ваш регулятор тембра представляет собой потенциометр со встроенным переключателем (кнопка ON-ON), Вы можете переключаться между двумя конденсаторами различной емкости (4).
Больше вариантов тембра можно получить применением кругового переключателя (галетника) с припаянными к нему конденсаторами разной емкости и подключаемые параллельно к датчику (5). Такой способ позволяет изменять резонансную частоту датчика, получая большее разнообразие звуков. Эксперименты с конденсаторами различных емкостей между 0.0005мкФ (0.5нФ или 500пФ) и 0,010мФ (10нФ) - позволит Вам узнать различия в тембрах. Конденсатор большей емкости, включенный параллельно срежет больше ВЧ и сделает звук более низкочастотным чем конденсатор с меньшей емкости. Если круговой переключатель выдает щелчки при переключении, присоедините параллельно каждому конденсатору резистор номиналом 10М. Вы можете купить готовые круговые переключатели со встроенными конденсаторами (6) для большинства датчиков и гитар у немецкого эксперта гитарной электроники Гельмута Лемме (см. адреса поставщиков). (ещё одна на мой взгляд бестолковая идея, видимо у господина Гельмута Лемме обнаружился излишек галетников, которые срочно нужно продать).
Дальнейшие эксперименты могут состоять в соединении резистора с конденсатором последовательно (6-8к) или параллельно (100-150к). Этот резистор должен урезать резонансные пики, которые являются слишком высокими и сделать звук более теплым.
Хамбакер состоит из двух идентичных катушек, которые обычно соединяются последовательно, начала обмоток соединяются между собой (т.н. средняя точка), а концы образуют выводы. Один из этих выводов часто соединяется с металлической опорной пластиной (1), обеспечивая таким образом экран для датчика. В этом случае надо знать точно какой из выводов хамбакера связан с экраном. Обычно достаточно двух выводов, но можно получить больше вариантов звука, если экран соединен с отдельным третьим выводом (2). Максимальное количество свободы для коммутации катушек в хамбакере дают пять выводов (3) (четыре провода от катушек (два начала, два конца) плюс провод земли).
Можно также превратить хамбакер в сингл, разделяя его катушки переключателем (4). Такая схема даст типичный звук сингла, но конечно эффект шумоподавления будет потерян.
Вместо того, чтобы использовать переключатель можно включить в схему параллельно одной из катушек размыкающий потенциометр (5). Чтобы сделать его, вскройте потенциометр и ножом проточите дорожку сопротивления ближе к одному из выводов. При этом в начале такого потенциометра датчик будет работать как чистый хамбакер. Затем поворачивая движок потенциометра подвижный контакт восстановит соединение с другим выводом, и к концу хамбакер плавно перейдет в режим сингла.
Соединение двух катушек хамбакера параллельно даст новые варианты тембра с сохранением эффекта шумоподавления. Это возможно посредством DPDT (двухпопозиционного, сдвоенного) переключателя (6). Такая параллельная связь даст более яркий звук, но сделает меньше выход.
Производители и цвета проводов датчиков
Синглы
Производитель | Начало (первый вывод) | Конец (второй вывод) | Полюсовка/Намотка |
Tom Anderson | черный- | белый + | N/по часовой |
Kent Armstrong | черный- | белый + | S/по часовой |
Seymor Duncan | черный- | белый + | S/по часовой |
Gibson P-9O | черный - | белый + | N/по часовой |
Fender Strat | черный - | белый + | S/по часовой |
Fender Tele | черный - | белый + | S/против часовой |
Gotoh | черный - | белый + | S/по часовой |
Lindy Fralin | черный - | белый + | разная |
Lawrence | серый - | белый + | N/по часовой |
Schaller | черный - | белый + | разная |
Комбинация двух синглов в режим хамбакера
Когда два сингла расположенные своими магнитными полюсами в противоположные стороны используются одновременно, оба датчика могут быть соединены параллельно или последовательно, как хамбакер. Почему такое соединение не используется для датчиков на Jazz Bass как те, которые показаны выше, для меня загадка. Оба датчика имеют одинаковую полюсовку магнитов ее очень трудный изменить, потому что катушки намотаны прямо на магниты.
Для датчиков, которые имеют плоские магниты, расположенные под катушкой, полярность магнитного поля можно легко изменить, поменяв ориентацию магнитов.
Определение выводов катушек хамбакера
Если у Вас нет схемы и никаких предположений о том, от каких катушек и какие провода выходят из хамбакера, у Вас есть два пути определения этой коммутации: первый - попробовать разобрать датчик (я против такого пути, поскольку при разборке датчик может быть легко поврежден), второй - использовать омметр для измерения сопротивления, что бы затем из этого сделать логические выводы. Переключите мультиметр в режим измерения сопротивления, установите переключатель режимов на 20 кОм и замерьте сопротивление на двух любых проводах. Если они не связаны, это провода от разных катушек. Продолжите замер сопротивлений поочередно на других проводах по отношению к одному из двух первых, пока мультиметр не покажет сопротивление в диапазоне от 1к до 12к, что означает, что Вы нашли два провода от одной катушки. Запишите их цвета, потом тем же способом найдите провода другой катушки. Когда Вы нашли и записали цвета выводов второй катушки, останется только провод, который должен быть подсоединен к медной пластине - экрану. Довольно часто этот провод соединен с проводом экранирующей оплетки кабеля датчика и поэтому легко распознаваем.