Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. Векторы называются компланарными, если они расположены в одной плоскости или в параллельных плоскостях.
Векторы и называются равными и пишут , если они коллинеарны, одинаково направлены и имеют равные длины. Векторы и называются противоположными и пишут , если они коллинеарны, направлены в разные стороны и имеют равные длины.
Суммой векторов и называется вектор , соединяющий начало вектора и конец вектора , при условии, что конец вектора совпадает с началом вектора (правило треугольника). Произведением вектора на действительное число называется вектор :
1) коллинеарный вектору ; 2) имеющий длину ; 3) направленный одинаково с вектором , если , и противоположно, если .
Ортом вектора , называется вектор , имеющий единичную длину и направление вектора : .
Базисом в пространстве называется упорядоченная тройка некомпланарных векторов, базисом на плоскости – упорядоченная пара неколлинеарных векторов, базисом на прямой – любой ненулевой вектор на этой прямой. Базис, в котором все векторы попарно перпендикулярны и имеют единичную длину, называется ортонормированным. Векторы ортонормированного базиса обозначаются: и , и называются базисными ортами. Различают правый и левый ортонормированные базисы. Базис -называется правым, если кратчайший поворот от к совершается против хода часовой стрелки, в противном случае он – левый. Базис -называется правым, если из конца вектора кратчайший поворот от вектора к виден совершающимся против хода часовой стрелки, в противном случае он – левый.
Условием коллинеарности векторов и является равенство: , где - некоторое число. Условием компланарности векторов , и является равенство: , где - некоторые числа.
Всякий геометрический вектор может быть разложен единственным образом по векторам базиса, коэффициенты разложения называются при этом координатами вектора в данном базисе. Например, если - базис и , то всегда существует единственное разложение: , где числа - координаты вектора в базисе , при этом пишут . Если в зафиксирован ортонормированный базис и , то равносильны записи: и (в записи вектора в координатной форме ортонормированный базис не указывают).
Представление геометрических векторов в координатной форме, позволяет выполнять действия над ними, как над арифметическими векторами:
;
.
Декартовой прямоугольной системой координатв пространстве называется совокупность точки (начало координат) и правого ортонормированного базиса и обозначается . Прямые , , , проходящие через начало координат в направлении базисных векторов, называются координатными осями: первая – осью абсцисс, вторая – осью ординат, третья – осью аппликат. Плоскости, проходящие через оси координат, называются координатными плоскостями. Аналогично вводится система координат на плоскости: .
Пусть - произвольная точка пространства, в котором введена система координат = . Радиус-вектором точки называется вектор , который всегда единственным образом можно представить в виде: . Числа , являющиеся координатами радиус-вектора, совпадают с проекциями вектора на базисные орты и (на координатные оси и ). Координатами точки в системе координат называются координаты её радиус-вектора и пишут . В свою очередь, координаты точки полностью определяют её радиус-вектор . Всякий геометрический вектор в системе координат , всегда можно представить как радиус-вектор некоторой точки и записать в виде: .
Длина вектора , заданного координатами , определяется формулой: . Направляющими косинусами вектора называются числа: , , , при этом .
Координаты вектора , заданного точками и определяются по формуле: . Расстояние между точками и определяется как длина вектора и находится по формуле:
.
Координаты точки делящей отрезок пополам находятся по формулам: , , .
Скалярным произведением векторов и называется число . Скалярное произведение обладает свойствами:
1) ; 2) где - число;
3) ; 4)
5) ; 6) , , , , , . Для векторов и , заданных своими координатами , скалярное произведение вычисляется по формуле: .
Скалярное произведение применяют: 1) для вычисления угла между векторами и по формуле: ; 2) для вычисления проекции вектора на вектор по формуле: ; 3) для вычисления длины вектора по формуле: ; 4) в качестве условия перпендикулярности векторов и : .
Векторным произведением векторов и называется вектор , определяемый условиями: 1) ;
2) и ; 3) - правая тройка векторов.
Упорядоченная тройка некомпланарных векторов называется правой тройкой, если из конца третьего вектора , кратчайший поворот от первого вектора ко второму , виден совершающимся против хода часовой стрелки. В противном случае, тройка называется левой.
Векторное произведение обладает свойствами:
1) ; 2) , где - число;
3) ; 4) 5) ;
6) , , , , , .
Для векторов и , заданных своими координатами , векторное произведение вычисляется по формуле: .
Векторное произведение применяют: 1) для вычисления площадей треугольника и параллелограмма, построенных на векторах и , как на сторонах, по формуле: ; 2) в качестве условия параллельности векторов и : .
Смешанным произведением упорядоченной тройки векторов , и называется число .
Смешанное произведение обладает свойствами:
1) ; 2) ;
3) ; 4) и -компланарны ;
5) , где -объём параллелепипеда, построенного на векторах , и .
Для векторов , и , заданных своими координатами , , смешанное произведение вычисляется по формуле: .
Смешанное произведение применяют: 1) для вычисления объёмов тетраэдра и параллелепипеда, построенных на векторах , и , как на рёбрах, по формуле: ; 2) в качестве условия компланарности векторов , и : и - компланарны.
Тема 8. Прямые линии и плоскости.
Нормальным вектором прямой , называется всякий ненулевой вектор перпендикулярный данной прямой. Направляющим вектором прямой , называется всякий ненулевой вектор параллельный данной прямой.
Прямая на плоскости в системе координат может быть задана уравнением одного из следующих видов:
1) - общее уравнение прямой, где - нормальный вектор прямой;
2) - уравнение прямой, проходящей через точку перпендикулярно данному вектору ;
3) - уравнение прямой, проходящей через точку параллельно данному вектору (каноническое уравнение);
4) - уравнение прямой, проходящей через две данные точки , ;
5) -уравнения прямой с угловым коэффициентом , где - точка через которую прямая проходит; () – угол, который прямая составляет с осью ; - длина отрезка (со знаком ), отсекаемого прямой на оси (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).
6) -уравнение прямой в отрезках, где и - длины отрезков (со знаком ), отсекаемых прямой на координатных осях и (знак «», если отрезок отсекается на положительной части оси и «», если на отрицательной).