Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема 4. Системы векторов. N-мерное векторное пространство. Евклидово пространство




Федеральное агентство по образованию

 

Государственное образовательное учреждение

Высшего профессионального образования

«Камская государственная инженерно-экономическая академия»

 

 

ЛИНЕЙНАЯ АЛГЕБРА И ГЕОМЕТРИЯ

 

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

для студентов заочной формы обучения

Г. Набережные Челны


1.Цель и задачи дисциплины, её место в учебном процессе.

Цель преподавания дисциплины «Линейная алгебра и геометрия» -формирование системы базовых знаний по данной дисциплине, которая позволит будущим специалистам решать в своей повседневной деятельности актуальные задачи практики, понимать написанные на современном научном уровне результаты других исследований и тем самым совершенствовать свои профессиональные навыки.

Основными задачами дисциплины являются:

- ознакомление студентов с ролью математики в современной жизни, с характерными чертами математического метода изучения реальных задач;

- обучение студентов теоретическим основам курса;

- привитие практических навыков математического моделирования реальных социально-экономических задач с использованием математического аппарата данного курса;

- развитие у студентов навыков творческого и логического мышления, повышение общего уровня математической культуры.

Данная дисциплина является основой при изучении таких дисциплин, как «Численные методы», «Теория вероятностей и математическая статистика», «Многомерные статистические методы», «Методы оптимизации», «Исследование операций», «Эконометрика», а также других дисциплин, изучающих современные экономико-математические методы. В свою очередь, для изучения данной дисциплины необходимо знание элементарной математики.

В результате изучения данной дисциплины студент должен:

- знать теоретические основы линейной и векторной алгебры, алгебры многочленов, аналитической геометрии;

- уметь использовать полученные знания для решения практических задач.

Изучение дисциплины предусматривает проведение лекционных, практических занятий и самостоятельную работу студентов. В лекциях излагается содержание тем программы с учётом требований, установленных для специалиста в квалификационной характеристике. Практические занятия проводятся с целью закрепления теоретических основ курса, получения практических навыков решения математических задач. Контроль знаний осуществляется с помощью контрольной работы и итогового экзамена.

Содержание и структура дисциплины.

Содержание дисциплины (наименование и номера тем).

Раздел I. ЛИНЕЙНАЯ АЛГЕБРА.

Тема 1. Определители.

Определители 2-ого, 3-его, порядков, порядка n. Свойства определителей. Миноры и алгебраические дополнения. Разложение определителя по элементам строки или столбца. Вычисление определителей.

Литература: [1] –C.142-154; [2] – C.22-26; [3] – C.426-431; [4] – C.263-268.

Тема 2. Матрицы.

Определение матрицы. Виды матриц. Действия над матрицами. Линейная зависимость и независимость строк матрицы. Базисный минор. Ранг матрицы. Обратная матрица, условие существования, основные способы её нахождения. Матричные уравнения, их решение.

Литература: [1] –C.136-142; 159-165;174-182; [2] – C.9-16; 26-29;

[3] – C.416-426; 431-435; [4] – C.259-263; 272-276.

Тема 3. Системы линейных уравнений.

Системы линейных уравнений (СЛУ). Основные понятия и определения. Матричная запись СЛУ. Теорема Кронеккера-Капелли. Формулы Крамера. Решение СЛУ методом обратной матрицы. Решение СЛУ методом Гаусса. Базисные и свободные неизвестные. Общее, базисное и опорное решения СЛУ. Однородные системы линейных уравнений, свойства их решений. Условия существования ненулевых решений однородных СЛУ. Фундаментальная система решений. Структура общего решения СЛУ.

Литература: [1] –C.136-142; 154-159; 165-174; [2] – C.38-53;

[3] – C.436-457; [4] – C.268-276.

 

Тема 4. Системы векторов. N-мерное векторное пространство. Евклидово пространство.

N – мерный арифметический вектор. Линейные операции над векторами, их свойства. Понятие n-мерного векторного пространства . Линейно зависимые и независимые системы векторов, их свойства. Базис и ранг системы векторов, пространства . Координаты вектора в . Скалярное произведение. Евклидово пространство. Ортогональный базис. Разложение вектора по ортогональному базису. Процесс ортогонализации Шмидта.

Литература: [1] –C.188-196; 222-231; [2] – C.68-78; [3] – C.406-416.

 





Поделиться с друзьями:


Дата добавления: 2016-11-03; Мы поможем в написании ваших работ!; просмотров: 267 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2176 - | 2134 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.