Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные типы хромосомных аббераций




Все хромосомные аберрации, возникающие в соматических клетках человека и регистрируемые на стадии метафазы, разделяются на две основные группы: аберрации храматидного типа и аберрации хромосомного типа. Согласно наиболее распространенному мнению, аберрации хромосомного типа отражают повреждение хромосомы в пресинтетической стадии (G1 - фаза), когда хромосома реагирует как однонитчатая структура, тогда как аберрации хроматидного типа возникают при повреждении хромосомы на стадии ее двух нитей (фаза S и G2).

Аберрации хромосомного типа

Исследования соматических клеток в метафазе показало, что цитологически можно различить 7 видов хромосомных аберраций. Типы аберраций, указанных на рисунке 2 в пунктах а - д, образуются в одной хромосомы и могут быть названы внутрихромосомными обменами, а аберрации, указанные в пунктах е и ж, сопровождаются обменом участками между различными хромосомами и называются межхромосомными обменами.

а) Ацентрические фрагменты (терминальные делеции) представляют собой спаренные хроматиды, которые располагаются параллельно друг другу, но не имеют центромеры.

б) Малые фрагменты (интерстициальные, изодиаметрические делеции) - спаренные хроматиды меньшего размера, чем ацентрические фрагменты, имеющие характерный вид спаренных хроматиновых шариков.

в) Ацентрические кольца - спаренные хроматиды в форме кольца, не содержащие центромеры. Различия между малыми фрагментами и кольцами часто бывают произвольными, поскольку они основаны лишь на длине не достигающего интерстициального участка хромосомы.

г) Центрические кольца - спаренные хроматиды в форме кольца, имеющие центромеру.

д) Перецентрические инверсии - результат инверсии сегмента, содержащего центромеру, с последующим его включением в ту же хромосому.

е) Симметрические межхромосомные обмены (реципроктные транслоказы) - аберрации, возникающие в результате обмена между двумя хромосомами, причин дистальные участки двух хромосом транслоцируются от одной к другой.

ж) Асимметричные межхромосомные отмены (дицентрические, полицентрические аберрации). Возникают в результате обмена между двумя или несколькими хромосомами, происходящие таким образом, что проксимальные участки хромосом соединяются, образуя дицентрическую или полицентрическую структуру с сопутствующим ацентрическим пробелом.

Аберрации хроматидного типа

К ним относятся хроматидные разрывы (фрагменты хроматид) и хроматидные обмены. Фрагменты могут быть концевыми интерстициальными и точковыми. Если произошли изохроматидный разрыв и поврежденные концы сестринских хроматид соединились, то из-за притяжения сестринских хроматид на остальной части они остаются лежать параллельно и потому имеют вид дуги. Хроматидные фрагменты, малоудалённые от места повреждения, необходимо дифференцировать от ахроматических пробелов, представляющих собой неокрашенные участки хромосом (частки локальной деспирализации хромосом). О фрагментах говорят в трех ситуациях:

1. Фрагмент сдвинут по длине.
2. Перевернут.
3. Сдвинут по оси.

Обмены хроматидного типа крайне многообразны. Они могут быть между хроматидами одной хромосомы, двух и более хромосом. Кроме того, различают полные и неполные, симметричные и ассиметричные обмены. Все это создает возможность образование большого числа форм обменов. При межхромосомных обменах образуются фигуры три-, квадри-, и мультирадианов, или неправильных форм. Структура обменной аберрации зависит от величины обмениваемых участков, гомологичности хромосом, идентичности плеч, симметричности (эуцентричности) и полноты (рецепроктности) обмена.

Механизмы возникновения хромосомных перестроек

Хромосомные перестройки - это обширный и гетерогенный класс наследственных изменений, включающий выпадение (потери). Добавления (удвоение, умножение) участков хромосом, а также их перемещения в пределах одной хромосомы или между хромосомами.

Исторически эксперименты и теоретически построения по индуцированному мутагенезу значительно опередили работы по выяснению природы генетического материала хромосом. Однако после 1953, когда в работе Д. Уотсона и Ф. Крика было сделано предположение о структуре молекулы ДНК, о полуконсервативном характере об репликации и о возможной молекулярной природе мутаций, открылась возможность для конкретных исследований как характера повреждений в ДНК, индуцируемых различными мутагенами, так и реальных механизмов репарации этих повреждений. В монографии Н.П. Дубинина приведены сведения о повреждениях ДНК различными мутагенами.

Обширный класс алкилирующих соединений может производить алкилирование (присоединение метильной или этильной группы) в некоторых позициях к азотистым основаниям (чаще всего к гуанину) или к фосфатным группам полинуклиотидной нити. Алкилированные азотистые основания за счет гидролиза выщепляются из цепочки ДНК, в следствии чего появляются апуриновые или апиримидиновые сайты. В таких сайтах далее может идти гидролиз нестабильных дезоксирибозидных остатков, и в результате возникают однонитевые разрывы в ДНК. Разрывы могут быть и следствием гидролиза после алкилирования фосфатных групп.

Бифункциональные алкилирующие соединения (серный и азотный иприт,митомицин C) своими двумя алкильными группами могут алкилировать сразу два гуанина из двух комплементарных нитей ДНК, образуя при этом внутримолекулярную сшивку.

Такие сшивки - типичный результат воздействия на ДНК также азотистой кислоты и ее солей.

Как видно, большинство первичных изменений в ДНК, вызываемых мутагенами, сами по себе еще не мутации, т.е. не являются изменениями в последовательности нуклеотидов. Эта последовательность может быть изменена только после прохождения поврежденной молекулы через этап репликации. Так, при репликации молекулы, в одну из нитей которой встроена молекула акридинового красителя, против этой поврежденной нити строиться комплементарная ей цепочка, содержащая лишний нуклеотид, вставленный против места, где в поврежденной цепи интеркалирована молекула акридина. Такая вставка нуклеотида, закрепляющаяся в обеих нитях молекулы после еще одной репликации - это уже мутация, обозначаемая как “сдвиг рамки считывания” (frame shift). Сшивки в молекуле ДНК обычно летальны, т.к. не позволяют осуществлять нормальную репликацию из-за невозможности расплетения нитей в месте сшивки.


 





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 950 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2216 - | 2044 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.