Жидкость по трубопроводу движется благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может создаваться несколькими способами: работой насоса, разностью уровней жидкости, давлением газа.
Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис. 6.1), имеет общую длину l и диаметр d, а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z1 и избыточное давление Р1, а в конечном сечении 2-2 - соответственно z2 и Р2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна ν.
Рис. 6.1. Схема простого трубопровода
Запишем уравнение Бернулли для сечений 1-1 и 2-2. Поскольку скорость в обоих сечениях одинакова и α1 = α2, то скоростной напор можно не учитывать. При этом получим
или
Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Нпотр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Нрасп. Такой напор складывается из геометрической высоты Hпотр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.
Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту
а последнее слагаемое Σ h - как степенную функцию расхода
Σ h = KQm
тогда
Hпотр = Hст + KQm
где K - величина, называемая сопротивлением трубопровода;
Q - расход жидкости;
m - показатель степени, который имеет разные значения в зависимости от режима течения.
Для ламинарного течения при замене местных сопротивлений эквивалентными длинами сопротивление трубопровода равно
где lрасч = l + lэкв.
Численные значения эквивалентных длин lэкв для различных местных сопротивлений обычно находят опытным путем.
Для турбулентного течения, используя формулу Вейсбаха-Дарси, и выражая в ней скорость через расход, получаем
Чем больше расход Q, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор Нпотр. При ламинарном течении эта кривая изображается прямой линией (рис.6.2, а), при турбулентном - параболой с показателем степени равном двум (рис.6.2, б).
Крутизна кривых потребного напора зависит от сопротивления трубопровода K и возрастает с увеличением длины трубопровода и уменьшением диаметра, а также с увеличением местных гидравлических сопротивлений.
Величина статического напора Нст положительна в том случае, когда жидкость движется вверх или в полость с повышенным давлением, и отрицательна при опускании жидкости или движении в полость с пониженным давлением. Точка пересечения кривой потребного напора с осью абсцисс (точка А) определяет расход при движении жидкости самотеком. Потребный напор в этом случае равен нулю.
26.Параллельное соединение.
Такое соединение показано на рис. 6.4, а. Трубопроводы 1, 2 и 3 расположены горизонтально.
Рис. 6.4. Параллельное соединение трубопроводов
Обозначим полные напоры в точках М и N соответственно HM и HN, расход в основной магистрали (т.е. до разветвления и после слияния) - через Q, а в параллельных трубопроводах через Q1, Q2 и Q3; суммарные потери в этих трубопроводах через Σ1, Σ2 и Σ3.
Очевидно, что расход жидкости в основной магистрали
Q = Q1 = Q2 = Q3
Выразим потери напора в каждом из трубопроводов через полные напоры в точках М и N:
Σ h 1 = HM - HN; Σ h 2 = HM - HN; Σ h 3 = HM - HN
Отсюда делаем вывод, что
Σ h1 = Σ h2 = Σ h3
т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом
Σ h 1 = K 1 Q 1m; Σ h 2 = K 2 Q 2m; Σ h 3 = K 3 Q 3m
где K и m - определяются в зависимости от режима течения.
Из двух последних уравнений вытекает следующее правило: для построения характеристики параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик этих трубопроводов при одинаковых ординатах (Σ h).
Следящий гидропривод.
Следящим называется регулируемый гидропривод, в котором скорость движения выходного звена изменяется по определенному закону в зависимости от задающего воздействия на звено управления. Выходное звено — это обычно шток гидроцилиндра или вал гидромотора, а звено управления — устройство, на которое подается управляющий сигнал.Следящий гидропривод применяют в тех случаях, когда непосредственное ручное управление той или иной машиной является для человека. Управление смещением золотника и его обратная связь с люлькой могут быть электрическими. В этом случае работа насоса может регулироваться дистанционно и автоматически, например, по командам ЭВМ. Гидроприводы, в которых входным воздействием является электрический сигнал, преобразуемый в перемещение гидрораспределителя, называют электрогидравлическими. В них выходное звено отслеживает изменение электрического сигнала, поступающего на звено управления. дроссели, имея нелинейные характеристики, позволяют при взаимодействии получить характеристики со взаимосвязью входных и выходных параметров близкой к линейной.