Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Применение квадратичных форм к исследованию кривых второго прядка




В общем случае кривая второго порядка в базисе описывается уравнением . Ее первые три слагаемые образуют квадратичную форму с матрицей:

.

Задача о приведении кривой к каноническому виду сводится к задаче о приведении к каноническому виду квадратичной формы этой кривой.

Пусть и – собственные значения матрицы , а и – ортонормированные собственные векторы матрицы , соответствующие собственным значениям и .

Ортонормированные векторы и называются главными направлениями этой кривой.

Пусть является матрицей перехода от ортонормированного базиса к ортонормированному базису .

Тогда ортогональное преобразование:

приводит квадратичную форму к каноническому виду , а уравнение кривой – к виду в прямоугольной декартовой системе координат , оси которой направлены вдоль векторов , а начало совпадает с точкой системы координат .

Выделив в этом уравнении полные квадраты, получим , где – некоторые числа. Осуществив параллельный перенос системы координат в новое начало , получим канонический вид уравнения в системе координат . В зависимости от чисел эта кривая будет эллипсом, гиперболой, параболой, парой прямых, точкой или мнимой кривой.

 

31ВОПРОС Комплексные числа и действия над ними. Сопряжённые числа. Алгебраическая, тригонометрическая и показательная формы комплексных чисел. Формулы Муавра и Эйлера.

Пара а,b действительных чисел а и b называются упорядоченной, если указано какое из них первое, какое второе. Комплексное число –это упорядоченная пара.

равны, если а=с и b=d. сумма: , умножение: отсюда

Сложение: чтобы сложить два компл. числа надо отдельно сложить их действительные и мнимые части. z=x+iy (x,y- действительные переменные i-мнимая единица). (a+bi)+(c+di)=(a+c)+(b+d)i;

Вычитание: необходимо вычесть отдельно их действительные и мнимые части.

(a+bi)-(c+di)=(a-c)+(b-d)i;

Произведение: (a+bi) (c+di)=(aс-bd)+(bc+ad)i;

Деление: a+bi/c+di = ac+bd/c2 +d2+bc-ad/c2+d2 i

Возведение в степень - формула бинома Ньютона Если дано , то число а-bi, отличающееся от только знаком при мнимой части называют сопряжённым числу и обозначают .

Сумма и произведение двух комплексно-сопряжённых чисел - действительные числа:

Упорядоченную пару i=(0,1), где i2=-1 называют мнимой единицей, с её помощью можно выразить упоряд. пару: bi=(b,0)(0,1)=(0,b)то(a,b)=(a,0)+(0,b)= =a+bi т.е. (a,b)=a+bi – алгебраическая форма.

, поскольку а=r cos то r - триганометрическая форма

Формула Эйлера: ввёл в обозначение I для мнимой единицы (i= )

Формула Муавра: если n –натуральное число и z=r(cos +I sin ),то zn=r(cos +I sin ))n = rn(cosn +isin n ).

 

 

 

32ВОПРОС Алгебраические многочлены. Теорема Безу. Основная теорема алгебры. Разложение многочлена на множители над полем комплексных и над полем действительных чисел. Разложение рациональных функций на простейшие дроби. Методы вычисления коэффициентов разложения.

Многочлен - это алгебраическая сумма одночленов. Степень многочлена есть наибольшая из степеней одночленов, входящих в данный многочлен.

Основная теорема алгебры:
всякий многочлен n -й степени с комплексными коэффициентами в множестве комплексных чисел имеет ровно n корней, если каждый кратный корень считать такое число раз, какова его кратность.
Основная теорема алгебры справедлива и при n =0, так как многочлен нулевой степени корней не имеет. Основная теорема алгебры неприменима лишь к нулевому многочлену (числу нуль), степень которого не определена.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 514 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.