Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задачи и упражнения для самостоятельного решения. 28.1. Закончить уравнения реакций: а) KMnO4 + H2S + H2SO4 = ;




28.1. Закончить уравнения реакций: а) KMnO4 + H2S + H2SO4 = …;

б) H2S + H2O2 = …; в) H2S + NaOH = …; г) Na2S + H2O ↔ ….

28.2. Почему сернистая кислота может проявлять как окислительные, так и восстановительные свойства? Составить уравнения реакций взаимодействия H2SO3: а) с сероводородом; б) с кислородом.

28.3. Какие свойства в окислительно-восстановительных реакциях проявляет серная кислота? Написать уравнения реакций взаимодействия разбавленной серной кислоты с магнием и алюминием и концентрированной – с медью и серебром.

28.4. Какой объем диоксида серы SO2 при нормальных условиях можно получить при сжигании серы массой 500 г? (Ответ: 350 л).

28.5. Какие свойства, окислительные или восстановительные, проявляет сернистая кислота при взаимодействии: а) с магнием; б) с иодом; в) с сероводородом? Составить уравнения соответствующих реакций.

28.6. Можно ли окислить сероводород кислородом при 298 К? Ответ мотивировать, вычислив Δ G ° реакции 2H2S (г) + O2 (г) = 2S (к) + 2H2O (ж).

( = –33,8 кДж/моль; = –237,3 кДж/моль).

(Ответ: –407 кДж).

28.7. Раствор, содержащий 5,12 г серы в 100 г сероуглерода CS2, кипит при 46,67 °С. Температура кипения чистого сероуглерода 46,20 °С. Эбулиоскопическая константа сероуглерода 2,37. Вычислить молекулярную массу серы и установить, из скольких атомов состоит молекула серы. (Ответ: 258; S8).

28.8. Через 100 мл 0,2 М раствора NaOH пропустили 448 мл SO2 (н.у.). Какая соль образовалась? Найти ее массу. (Ответ: NaHSO3; 2,08 г).

28.9. Закончить уравнения реакций: а) H2S + SO2 = …; б) H2SO3 + I2 = …;

в) KMnO4 + SO2 + H2O = …; г) HIO3 + H2SO3 = ….

28.10. Привести примеры уравнений реакций (не менее двух на каждый случай) получения SO2, которые:

а) сопровождаются изменением степени окисления серы;

б) не сопровождаются изменением степени окисления серы.

28.11. Закончить уравнения реакций: а) S + KOH = …; б) HNO2 + H2S = …;

в) Na2S + NaNO3 + H2SO4 = …; г) H2S + KMnO4 + H2O = ….

28.12. Написать уравнение реакции получения сернистого газа (SO2) из железного колчедана (FeS2). Рассчитать объем SO2 (условия нормальные), который получится при окислении 1,5 кг железного колчедана. (Ответ: 560 л).

28.13. Закончить уравнения реакций гидролиза в молекулярном и ионном виде:

а) Na2S + H2O ↔ …; б) (NH4)2S + H2O = …;

в) Al2S3 + H2O = …; г) Cr2(SO4)3 + Na2S + H2O = ….

28.14. Закончить уравнения реакций взаимодействия серной кислоты с металлами: а) Cu + H2SO4 (конц.) = …; б) Mg + H2SO4 (конц.) = …;

в) Hg + H2SO4 (конц.) = …; г) Ni + H2SO4 (разб.) = ….

28.15. В 10 л воды растворили 2,24 л газообразного SO3 при нормальных условиях. Рассчитать молярную и молярную концентрацию эквивалентов полученного при этом раствора серной кислоты. (Ответ: 0,008 моль/л; 0,016 моль/л).

28.16. Сколько миллилитров концентрированной серной кислоты

(ρ = 1,84 г/мл), содержащей 98 % H2SO4, теоретически необходимо для перевода в раствор 10 г меди? Какой объем SO2 (условия нормальные) выделится при этом? (Ответ: 17 мл; 3,52 л).

28.17. Определить молярную концентрацию эквивалентов раствора Na2SO3, если при окислении 20 мл его в кислой среде требуется 16 мл 0,05 н. раствора KMnO4. (Ответ: 0,04 н.).

28.18. Сколько литров Н2S (условия нормальные) потребуется для восстановления в сернокислом растворе 100 мл 5,7 %-го раствора K2Cr2O7 (ρ = 1,04 г/мл)?

(Ответ: 1,35 л).

28.19. Какими тремя способами можно получить сероводород, имея в своем распоряжении цинк, серу, водород и серную кислоту? Составить уравнения соответствующих реакций.

28.20. Закончить уравнения реакций окисления концентрированной серной кислотой следующих веществ:

а) Zn + H2SO4 = …; б) KI + H2SO4 = …; в) C + H2SO4 = ….

 

Азот

Теоретическое введение

Азот – элемент V группы главной подгруппы, типичный неметалл. Атом азота на внешнем энергетическом уровне содержит пять электронов 2 s2 2 р3. Поэтому в соединениях проявляет степени окисления от −3 (низшая) до +5 (высшая).

При обычных условиях азот – газ, без цвета и запаха, мало растворим в воде. В лаборатории его получают при нагревании смеси концентрированных растворов хлорида аммония и нитрита натрия. При комнатной температуре азот химически малоактивен.

При нагревании азот реагирует со многими металлами и неметаллами, образуя нитриды, из которых наибольшее значение имеет аммиак NH3. Это бесцветный газ с характерным запахом, легче воздуха, хорошо растворяется в воде и химически с ней взаимодействует. Раствор аммиака в воде называют гидроксидом аммония и относят к слабым основаниям. В лаборатории аммиак получают нагреванием солей аммония с гидроксидом или оксидом кальция.

Для аммиака характерны реакции присоединения по донорно-акцепторному механизму. При взаимодействии с кислотами NН3 образует соли аммония, содержащие ион NH4+. Все соли аммония термически малоустойчивы, характер разложения зависит от кислоты, образующей соль. Если кислота является окислителем, то при нагревании происходит реакция внутримолекулярного окисления-восстановления

(NН4)2Сr2O7 = N2 + Cr2O3 + 4H2O.

Если кислота не является окислителем, то при нагревании солей аммония выделяется аммиак. Выделяющийся аммиак при охлаждении может снова реагировать с кислотой, если она сильная и летучая:

NH4Cl = NH3 + HCl.

При действии сильных окислителей аммиак проявляет восстановительные свойства.

Азот образует с кислородом оксиды: N2O, NО, N2O3, NO2, N2O5. Наибольшее практическое значение имеют оксиды NO и NO2. Оксид азота (П) – бесцветный газ, малорастворим в воде и химически с ней не взаимодействует. Это несолеобразующий оксид. В лаборатории его получают при действии разбавленной азотной кислоты на медь. NО легко соединяется с кислородом, образуя NO2.

Оксид азота (IV) в лаборатории получают при действии концентрированной азотной кислоты на медь или нагреванием Pb(NO3)2. NO2 – газ бурого цвета, при растворении в воде дает две кислоты:

2NO2 + Н2O = HNO2 + HNO3.

Азотистая кислота НNO2 в свободном состоянии не получена, известна в водных растворах, относится к слабым кислотам. Соли HNO2 – нитриты – получены и вполне устойчивые. В реакциях проявляют свойства окислителей и восстановителей.

Азотная кислота HNO3 относится к сильным кислотам и сильным окислителям. При восстановлении может давать различные продукты в зависимости от активности восстановителя, концентрации кислоты и температуры. Соли азотной кислоты – нитраты, твердые вещества, хорошо растворимые в воде.





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 741 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2116 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.