Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Химическая связь и строение молекул




Теоретическое введение

Все вещества образуются в результате возникновения между атомами, входящими в их состав, прочных связей, называемых химическими.

Химическая связь осуществляется в результате электростатического взаимодействия положительно заряженных атомных ядер и отрицательно заряженных электронов, а также электронов друг с другом.

Различают три основных вида химической связи – ионная, ковалентная и металлическая. В чистом виде каждый из перечисленных видов связи встречается крайне редко. Кроме основных видов связи существуют различные типы межмолекулярных взаимодействий – вандерваальсовы взаимодействия (диполь-дипольное, индукционное, дисперсионное), водородная связь и др.

Строение и свойства молекул или других частиц характеризуются рядом параметров химической связи – энергией связи, длиной связи (межатомные расстояния), валентным углом (угол между воображаемыми прямыми, проходящими через ядра атомов).

Химическая связь образуется только в том случае, если при сближении атомов (двух или более) полная энергия системы (сумма кинетической и потенциальной энергий) понижается. Количество энергии, выделяющееся при образовании химической связи, называется энергий связи и измеряется в кДж/моль.

Энергия связи является мерой ее прочности – чем выше энергия связи, тем прочнее молекула, тем ниже длина связи.

Так, например, расстояние между ядрами водорода и кислорода в молекуле воды составляет 0.096 нм, угол Н-О-Н – 104.5о, а энергия связи Н-О 462 кДж/моль.

Ионная химическая связь образуется в результате электростатического взаимодействия отрицательно и положительно заряженных ионов. Условием образования ионной связи является большая разность в значениях электроотрицательности атомов, образующих молекулу. Считается, что ионная связь образуется между элементами, разность в электроотрицательности которых достигает или превышает 2.0. К наиболее типичным соединениям с ионной связью относятся галогениды щелочных и щелочноземельных металлов.

При образовании ионной связи атомы стремятся отдать или принять такое число электронов, чтобы строение их внешней электронной оболочки оказалось аналогичным строению ближайшего к ним инертного газа (восемь электронов на внешнем энергетическом уровне).

Например, хлорид натрия (NaC1) состоит из катионов Na+ и анионов C1-, которые являются продуктами в результате окисления атомов натрия и восстановления атомов хлора:

Na - 1ē = Na+ (1s22s22p6)

Cl + 1ē = Cl- (1s22s22p63s23p6)

При обычных условиях ионные соединения представляют собой кристаллические вещества. В кристаллической решетке ионных соединений ион одного знака окружен определенным количеством ионов противоположного знака, число которых определяется соотношением ионного радиуса. Каждый ион притягивает к себе ионы противоположного знака в любом направлении. Так, в кристалле NaC1 каждый ион натрия окружен шестью ионами хлора, также как и каждый ион хлора окружен шестью ионами натрия. Поэтому, ионная связь характеризуется ненаправленностью и ненасыщаемостью.

В молекулах, образованных атомами с близкими значениями электроотрицательности, реализуется ковалентная связь.

Ковалентная связь образуется путем обобществления пары электронов двумя атомами.

В образовании ковалентной связи принимают участие так называемые «валентные» электроны – электроны внешней оболочки атома.

В случае образования двухатомной молекулы, например Н2, сближение двух атомов приводит к взаимному проникновению их атомных орбиталей друг в друга. При этом электронная плотность в межъядерном пространстве увеличивается и способствует притяжению ядер. Ядра атомов притягиваются друг к другу, энергия системы понижается. Расстояние между ядрами имеет оптимальное значение, характеризуемое длиной связи. Сближение ядер на более близкое расстояние приводит к их взаимному отталкиванию.

Н Н Н2

При образовании молекулы между одинаковыми атомами (молекулы водорода, кислорода, азота, хлора) область максимального перекрывания атомных орбиталей находится на одинаковом расстоянии от обоих ядер. Такая связь называется ковалентной неполярной связью. В таких молекулах электронная пара в одинаковой мере принадлежит обоим атомам. К неполярным относятся любые двухатомные гомоядерные молекулы – Н2, N2, О2, F2, С12, Br2, I2 и др. В случае, когда в образовании связи принимают участие разные атомы (с разной электроотрицательностью), электронная плотность смещена к более электроотрицательному атому. Такая связь называется ковалентной полярной связью. Примером молекул с такой связью могут служить галогеноводороды (НС1, НBr, HI), вода, сероводород (H2S), аммиак (NH3), оксиды углерода (CO, CO2) и др.

Ковалентная связь характеризуется насыщаемостью и направленностью. Направленность выражается значениями валентных углов, насыщаемость определяется количеством электронов и АО, способных участвовать в образовании связи.

Структура и свойства молекул с ковалентной связью объясняется с позиций метода валентных связей (ВС) и метода молекулярных орбиталей (ММО).

1. По методу ВС химическая связь между двумя атомами возникает в результате перекрывания атомных орбиталей (АО) с образованием электронных пар.

2. Образованная электронная пара локализована между двумя атомами. Такая связь является двухцентровой и двухэлектронной.

3. Химическая связь образуется только при взаимодействии электронов с антипараллельными спинами.

4. Характеристики химической связи (энергия, длина, полярность, валентные углы) определяется типом перекрывания АО.

5. Ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов.

В образовании ковалентной связи могут принимать участие АО как одинаковой, так и различной симметрии. При перекрывании АО вдоль линии соединения атомов образуется s-связь.

s-s s-p p-p d-d

При перекрывании АО по обе стороны от линии соединения атомов образуется p-связь.

p-p p-d d-d

При перекрывании всех четырех лопастей d-АО, расположенных в параллельных плоскостях, образуется d-связь.

Примеры образования молекул по методу ВС.

В молекуле фтора F2 связь образована 2р-орбиталями атомов фтора:

  Образование молекулы F2  

В молекуле фтороводорода НF связь образована 1s-орбиталью атома водорода и 2р-орбиталью атома фтора:

Образование молекулы НF

Гибридизация атомных орбиталей. Для объяснения строения некоторых молекул в методе ВС применяется модель гибридизации атомных орбиталей (АО). У некоторых элементов (бериллий, бор, углерод) в образовании ковалентных связей принимают участие как s-, так и p-электроны. Эти электроны расположены на АО, различающихся по форме и энергии. Несмотря на это связи, образованные с их участием, оказываются равноценными и расположены симметрично. В молекулах ВеС12, ВС13 и СС14, например, валентный угол С1ЭС1 равен 180, 120, и 109.28о. Значения и энергии длин связей Э-С1 имеют для каждой из этих молекул одинаковое значение.

Принцип гибридизации орбиталей состоит в том, что исходные АО разной формы и энергии при смешении дают новые орбитали одинаковой формы и энергии. Тип гибридизации центрального атома определяет геометрическую форму молекулы или иона, образованного им.

Рассмотрим с позиций гибридизации атомных орбиталей строение ряда молекул.

ЛИНЕЙНАЯ МОЛЕКУЛА В молекуле ВеС12 центральным атомом является бериллий, у которого валентные электроны - 2s12p1. Образующиеся две sp-гибридидные орбитали расположены на одной линии под углом 180о. Таким образом, молекула хлорида бериллия имеет линейную конфигурацию. Такой же гибридизацией объясняется угол между связями в соединениях Mg, Zn, Cd, Hg, C в СО2 и С2Н2.
При гибридизации одной s- и двух p-орбиталей образуются три равноценных sp2-гибридидных орбитали, расположенных в пространстве под углом 120о. Такой тип гибридизации наблюдается в молекуле ВС13. У атома бора валентными являются 2s12p2-электроны. Такая молекула имеет форму плоского треугольника. Подобные гибридные орбитали характерны для атомов В, In, Tl в молекулах, например, тригалогенидов или для углерода в карбонат-анионе СО32- и в С2Н4.
Если в химической связи участвуют одна s- и три p-орбитали, то в результате их гибридизации образуются четыре sp3-орбитали, расположенных в пространстве под углом 109о. Такой тип гибридизации характерен для атомов углерода (валентные электроны - 2s12p3) в предельных углеводородах, азота в катионе аммония, титана, кремния и др. атомов в некоторых соединениях Образованные таким образом соединения с одним центральным атомом имеют форму тетраэдра.

Рассмотрим с позиций гибридизации молекулу ацетилена С2Н2. В молекуле ацетилена каждый атом углерода находится в sp-гибридном состоянии, образуя две гибридные связи, направленные под углом 180° друг к другу. Как в случае связей С-С, так и в случае связей С-Н возникает общее двухэлектронное облако, образующее σ-связи.

Но в молекуле ацетилена в каждом из атомов углерода содержится еще по два р-электрона, которые не принимают участия в образовании σ-связей. Молекула ацетилена имеет плоский линейный «скелет», поэтому оба р-электронных облака в каждом из атомов углерода выступают из плоскости молекулы в перпендикулярном к ней направлении. При этом происходит также некоторое взаимодействие электронных облаков, но менее сильное, чем при образовании σ-связей. В итоге в молекуле ацетилена образуются еще две ковалентные углерод-углеродные связи, называемые p-связями.

Метод молекулярных орбиталей (МО). В основе метода молекулярных орбиталей лежит положение о том, что при образовании химической связи атомные орбитали атомов утрачивают свою индивидуальность. В результате комбинации этих атомных орбиталей возникают молекулярные орбитали сложной формы, принадлежащие всей молекуле в целом, т. е. являющиеся многоцентровыми.

Образование молекулярных орбиталей из атомных изображают в виде энергетических диаграмм, где по вертикали откладывают значения энергии. Комбинация АО приводит к двум типам МО. Связывающие МО характеризуются повышенной концентрацией электронной плотности между ядрами атомов и более низким уровнем энергии (в сравнении с исходными АО). Нахождение электронов на таких орбиталях энергетически выгодно и приводит к образованию связи. Разрыхляющие МО характеризуются пониженной концентрацией электронной плотности между ядрами и более высоким уровнем энергии (в сравнении с исходными АО). Нахождение электронов на таких орбиталях энергетически невыгодно и не приводит к образованию связи. Разрыхляющие МО иначе называют антисвязывающими.

Заполнение МО осуществляется в порядке возрастания энергии и согласуется с принципом Паули и правилом Гунда.

С позиций метода МО возможно объяснение образования химической связи для частиц с одним электроном, например, Н2+. Возможность и невозможность образования простейших двухатомных молекул по методу МО можно рассмотреть на примере Н2 и Не2.

Энергетическая диаграмма атомных и молекулярных уровней водорода в молекуле Н2

Для оценки прочности связи в методе МО введен параметр, называемый порядком связи. Порядок связи рассчитывается как полуразность суммы электронов на связывающих и разрыхляющих орбиталях. Чем выше значение порядка связи, тем прочнее молекула и выше энергия связи. Так, в молекуле Н2 порядок связи равен 1. В молекуле Не2 (порядок связи равен нулю, это означает, что такая молекула не существует, так как при ее образовании энергия системы не изменяется.

  Энергетическая диаграмма, иллюстрирующая с помощью метода МО невозможность существования молекулы Не2

Примеры решения задач

Пример 5.1. Определите, как изменяется прочность соединений в ряду: HF, НСl, НВr, HI.

Решение. У этих двухатомных молекул прочность связи зависит от длины связи. А поскольку радиус атома при переходе от фтора к иоду возрастает, то длина связи Н - галоген в этом направлении возрастает, т.е. прочность соединений при переходе от фтора к иоду уменьшается.

Пример 5.2. В какой из приведенных молекул валентный угол между химическими связями равен 120o: H2O, CO2, CH4, BF3, BeCl2, NH3?

Решение. Значение валентного угла в каждой из этих молекул определяется типом гибридизации АО центрального атома. В молекулах H2O, CH4, и NH3 валентные электроны у атомов кислорода, углерода и азота расположены на sp3-гибридных АО, в молекулах CO2 и BeCl2 на sp-гибридных АО, а в молекуле BF3 sp2-гибридные АО атома бора расположены в пространстве под углом 120o и образуют плоский треугольник.

Пример 5.3. Определите тип химической связи (ионная, ковалентная неполярная, ковалентная полярная) в приведенных соединениях: N2, CO, NaF, O2, HCl, CO2, PH3, КС1.

Решение. Молекулы N2 и O2, состоящие из одинаковых атомов (гомоядерные) неметаллов, образованы ковалентной неполярной связью.

Гетероядерные молекулы CO, HCl, CO2 и PH3, образованы неметаллами, разность в значениях электроотрицательности для которых составляет менее 2.0, следовательно, в них реализуется ковалентная полярная связь.

Кристаллические соединения фторид натрия NaF и хлорид калия КС1 образованы катионами щелочных металлов и галоген-анионами. Это соединения с типично ионным характером химической связи.

Пример 5.4. Какие орбитали участвуют в образовании химических связей в молекулах HF, NO, H2S, N2?

Решение. В образовании химических связей принимают участие валентные электроны. Запишем электронные формулы атомов, образующих предложенные молекулы: H 1s1, C 1s22s22p2, N 1s22s22p3, F 1s22s22p5, S 1s22s22p63s23p4. Следовательно, в образовании молекулы HF принимают участие 1s-орбиталь атома водорода и 2р-орбиталь атома фтора, в образовании молекулы NO участвуют 2р-орбитали атомов азота и кислорода, молекула H2S образована 1s-орбиталью атомов водорода и двумя 3р-орбиталями атома серы, а молекула N2 2р-орбиталями двух атомов азота.

Пример 5.5. Расположите в ряд по увеличению прочности связи следующие молекулы: N2, CO, F2. Определите порядок связи в этих молекулах в соответствии с методом молекулярных орбиталей.

Решение. Прочность связи по методу МО возрастает при увеличении порядка связи. Порядок связи рассчитывается как полуразность электронов на связывающих и разрыхляющих орбиталях. В предложенных двухатомных молекулах в образовании молекулярных орбиталей принимают участие по три 2р-атомные орбитали каждого из атомов, всего шесть АО.

Образование молекулы N2 по методу МО Из них образуется столько же молекулярных орбиталей, три из которых связывающие: sz, px и py, и разрыхляющие: sz*, px* и py*. Порядок связи в предложенном ряду уменьшается: для N2 – 3, для CO - 2 и для F2 – 1. Следовательно,

прочность молекул увеличивается в обратной последовательности F2®CO®N2.





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 1098 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.