Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы анализа основной тенденции развития в рядах динамики и прогнозирование




Одной из важнейших задач статистики является определение в рядах динамики основной тенденции развития.

Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

Для выявления тенденции в рядах динамики используют специальные методы:

1. Метод укрупнения интервалов - предполагает переход от первоначального динамического ряда к рядам с большими временными промежутками, например, данные за каждый месяц года заменяют квартальными, годовые — пятилетними и т.д. По сформированным укрупненным интервалам либо просто суммируют уровни первоначального ряда, либо рассчитывают средние величины. В результате отклонения в уровнях первоначального ряда, обусловленные случайными причинами, сглаживаются, и более явно обнаруживается действие основных факторов (общая тенденция).

2. Метод скользящей средней – состоит в замене фактических значений показателя их усредненными величинами, расчет которых проводят путем последовательного смещения начала отсчета на единицу времени (скольжения), т.е. постепенно исключают из интервала первые уровни и включают последующие. Полученная средняя относится к середине укрупненного интервала.

Наиболее часто на практике применяются трехчленные средние:

.

Полученный таким образом сглаженный ряд более четко выражает основную тенденцию развития изучаемого явления.

3. Метод аналитического выравнивания – заключается в том, что находится уравнение , график которого наилучшим образом отражает основную тенденцию ряда динамики.

Аналитическое выравнивание позволяет не только определить основную тенденцию развития явления во времени, но и выполнять расчеты для таких периодов, по которым нет информации. При этом нахождение недостающих данных внутри динамического ряда называется интерполяцией, а нахождение значений за пределами анализируемого периода (т.е. в будущем) называется экстраполяцией.

Таким образом, на основе экстраполяции данных можно прогнозировать развитие явления в будущем, т.к. такое прогнозирование предполагает, что найденная закономерность развития внутри динамического ряда сохраняется и вне этого ряда.

Например, путем аналитического выравнивания получено, что основная тенденция явления выражается уравнением . Зная это уравнение и подставляя в него значения t, находящиеся за пределами этого ряда, можно построить прогноз. Пусть t=11, тогда прогнозируемое значение будет равно .

Однако следует помнить, что в действительности тенденция развития того или иного явления не остается неизменной, поэтому полученные путем экстраполяции прогнозируемые значения следует рассматривать как вероятностные оценки.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 405 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2153 - | 2108 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.