Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Показатели анализа рядов динамики




Для количественной оценки динамики проводят расчет таких показателей, как абсолютный прирост, темп роста, темп прироста, темп наращивания, абсолютное значение 1% прироста, средний уровень ряда динамики.

В основе расчета показателей ряда динамики лежит сравнительный анализ уровней ряда либо с постоянной, либо с переменной базой сравнения. При постоянной базе сравнения каждый уровень ряда сравнивается с одним и тем же показателем (уровнем), принятым за базу сравнения (у0). В этом случае получают базисные показатели. При переменной базе сравнения каждый уровень ряда сравнивают с предыдущим уровнем (yi-1) получают цепные показатели.

Таким образом, выделяют следующие аналитические показатели динамики:

1. Абсолютный прирост – это разность двух уровней ряда в исходных единицах измерения, которая характеризует абсолютное изменение уровня ряда за определенный промежуток времени:

- базисный: ;

- цепной: .

Абсолютный прирост может иметь отрицательное значение, если уровень изучаемого периода ниже уровня базисного периода или предшествующего.

Между цепными и базисным абсолютным приростом существует взаимосвязь: сумма цепных абсолютных приростов равна базисному абсолютному приросту последнего уровня ряда динамики:

2. Темп роста – это отношение двух уровней ряда, выраженное в процентах. Он характеризует относительное изменение уровня динамического ряда за какой-либо период времени:

- базисный: ;

- цепной: .

Если темп роста > 100%, то идет увеличение изучаемого уровня по сравнению с базисным или предыдущим показателем и наоборот.

Напомним, что средний темп роста определяется по формуле средней геометрической. Поскольку средний темп роста представляет собой средний коэффициент роста, выраженный в процентах (), то средний темп роста определяется по формуле:

.

Между базисным и цепными коэффициентами роста существует взаимосвязь – произведение последовательных цепных коэффициентов роста равно базисному коэффициенту роста последнего уровня ряда динамики:

.

3. Темп прироста – характеризует абсолютный прирост в относительных величинах:

- базисный: или ;

- цепной: или .

Если уровни ряда динамики сокращаются, то соответствующие показатели темпов прироста будут отрицательными, т.к. они характеризуют уменьшение ряда динамики в %.

Средний темп прироста определяется по формуле:

.

4. Темп наращивания – показывает в экономике наращивание во времени экономического потенциала. Вычисляется делением цепных абсолютных приростов на уровень, принятый за постоянную базу сравнения:

.

5. Абсолютное значение одного процента прироста – применяется для сравнения абсолютного прироста и темпа прироста за одни и те же периоды времени, и показывает, какое абсолютное значение скрывается за относительным показателем – одним процентом прироста:

.

6. Средний уровень ряда динамики – характеризует обобщенную величину абсолютных уровней.

Методы расчета среднего уровня интервального и моментного рядов динамики различны.

Для интервальных рядов динамики средний уровень за период времени определяется по формуле средней арифметической:

а) при равных интервалах применяется средняя арифметическая простая:

.

б) при неравных интервалах применяется средняя арифметическая взвешенная:

.

Средний уровень моментного ряда динамики с равноотстоящими датами определяется по формуле средней хронологической простой:

.

Для моментных рядов с неравноотстоящими датами расчет среднего уровня ряда производится по формуле средней хронологической взвешенной:

.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 481 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2227 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.