Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры расчета магнитного поля




 

Пример 1. По длинному полому биметаллическому проводу, расположенному в воздухе, протекает постоянный ток I = 200 А (рис. 3.6). Радиус отверстия, внутреннего и наружного провода равны соответственно r0 = 4 мм, r1 = 8 мм и r2 = 16 мм. Внутренний провод выполнен из меди (g1 = 58 мкСм/м), наружный из алюминия (g2 = 34 мкСм/м).

Определить закон изменения векторного потенциала и магнитной индукции внутри и вне провода. Построить графики изменения этих величин вдоль радиуса. Найти индуктивность провода на единицу длины.

Решение. Поскольку поле в данном случае обладает цилиндрической симметрией, то данную задачу можно решить с помощью закона полного тока, представленного в интегральной форме (3.3). Для этого разобьем область исследования на четыре подобласти. В первой подобласти (0 £ r £ r0) напряженность магнитного поля равна нулю. Для определения напряженности поля во второй подобласти (r0 £ r £ r1), проводим окружность произвольным радиусом r с центром на оси провода и для контура, образованного данной окружностью применяем закон полного тока. С учетом того, что вектор напряженности направлен по касательной к окружности и по величине остается неизменным, выражение (3.3) можно представить в следующем виде:

Аналогично определяется напряженность поля в третьей подобласти (r1 £ r £ r2)

Таким образом, для определения напряженности поля в соответствующих подобластях необходимо рассчитать плотность тока d1 и d2

.

После подстановки в последние выражения соответствующих величин получаем d1 = 396.5 кА/м2, d2 = 232.4 кА/м2.

Напряженность поля в четвертой подобласти (r2 £ r £ ¥) определяется с помощь следующего выражения:

 
 

Изменение напряженности вдоль радиуса показано на рис. 3.7.

Отметим, что поскольку магнитная проницаемость во всей области одна и та же, то распределение магнитной индукции вдоль радиуса полностью повторяет распределение напряженности поля.

Для нахождения векторного потенциала необходимо для каждой из подобластей записать уравнение Пуассона (3.7) или Лапласа (3.8) и провести их совместное решение. Эти уравнения удобнее записывать в цилиндрической системе координат. При этом необходимо учитывать, что в данной задаче векторный потенциал имеет только одну составляющую, направленную по оси провода (по оси z) и эта составляющая зависит только от радиуса r. Раскрывая лапласиан в указанной системе координат, будем иметь:

Интегрируя дважды по r, получаем выражения для потенциала для каждой подобласти:

 

 

Слагаемое С1lnr должно отсутствовать, так как А не может принимать бесконечно больших значений при r = 0. Отсюда следует, что постоянная интегрирования С1 = 0. Векторный потенциал определяется с точностью до постоянной. Примем эту постоянную равной нулю: С8 = 0. Для определения оставшихся шести постоянных составим с помощью граничных условий систему уравнений. Эти граничные условия определяют равенство на границе раздела двух сред касательных составляющих напряженности поля и равенство векторного потенциала.

Касательной в данной задаче является угловая составляющая напряженности поля, которая определяется с помощью выражения (3.6) следующим образом:

Таким образом, для определения постоянных интегрирования получаем систему уравнений:

Решая совместно данные уравнения, получаем: С2 = 1.845×10-4; С3 = 3.986×10-4;
С4 =2.085×10-4; С5 = -2.612×10-6; С6 = 1.733×10-4; С7 = -4×10-4.

 
 

На рис. 3.8 показано распределение векторного потенциала вдоль радиуса. Данные на графике представлены в относительных единицах. За базисное значение принято значение потенциала в первой зоне А1 = 1.845×10-4 Вб/м.

Для определения индуктивности провода вначале найдем магнитный поток, пронизывающий биметаллический провод на длине, равной одному метру.

Для этого воспользуемся формулой (3.10), которую, с учетом того, что векторный потенциал направлен вдоль оси провода, а в подынтегральном выражении стоит скалярное произведение двух векторов, можно преобразовать к следующему виду:

Вб.

Таким образом, индуктивность (на один метр длины) биметаллического провода равна: L = Ф/I = 95.5×10-9 Гн/м.

Пример 2. Рассчитать напряженность магнитного поля двухпроводной линии с током I = 2700 А, провода которой выполнены из алюминия и имеют радиус R = 28 мм. Расстояние между проводами 2d = 20 м (рис. 3.9).

Решение. Решение данной задачи можно получить либо с помощью закона полного тока, либо с использованием функции векторного магнитного потенциала. Выражение векторного потенциала внутри цилиндрического провода с током и вне его, уже получено в предыдущем примере. Так, внутри провода (0 £ r £ R) оно имеет вид:

,

а вне провода (R £ r £¥) –

 

 
 

Постоянные интегрирования определяются из условий равенства на поверхности провода векторного потенциала (А1 = А2, при r = R) и его нормальных производных (dА1/dr = dА2/dr, при r = R)

Нас интересует поле только вне провода, поэтому выражение для потенциала в этой области с точностью до постоянной будет иметь вид:

Используя данную формулу, запишем выражение для определения векторного потенциала в произвольной точке М (рис. 3.9) от двух проводов

Примем значение постоянной С равной нулю (это означает, что за точку нулевого потенциала мы приняли начало координат) и перепишем последнее выражение в прямоугольной системе координат

С помощью выражения (3.6) найдем составляющие напряженности магнитного поля


при у = 10 м показано на рис. 3.10.

Распределение данных составляющих, а также модуля напряженности магнитного поля, который определяется по формуле

 

,

 

 





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 691 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2257 - | 2211 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.