Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Регуляция цикла трикарбоновых кислот




Цикл трикарбоновых кислот связан с предшествующими стадиями энергетического обмена (гликолиз, окисление жирных кислот), поэтому механизмы регуляции этих процессов будут справедливы и для цикла Кребса.

Типы регуляции:

1) Ретроингибирование;

2) Путём изменения концентрации субстрата на выходе цикла;

3) Аллостерическая регуляция (с помощью НАД, НАД * Н2, АТФ).

4) Ионная (рН, концентрация Са)

Так как цикл Кребса начинается со стадии ЩУК + ацетилКоА, то эти метаболиты управляют интенсивностью цикла. Первым регуляторным фактором является концентрация ЩУК, которая в основном образуется из ПВК. ПВК же образуется из углеводов (глюкозы), поэтому при диабете или углеводном голодании наблюдается недостаток ПВК, а значит и ЩУК и сам цикл блокируется. АцетилКоА не является лимитирующим субстратом, так как в основном образуется при окислении жирных кислот. Но в то же время ЩУК – конкурентный ингибитор сукцинатдегидрогеназы, поэтому при избытке ЩУК цикл трикарбоновых кислот блокируется на 6 – ой стадии. Это торможение можно убрать глутамином, который переаминирует ЩУК в аспарагин. Второй регуляторный центр – концентрация НАД и НАД * Н2. В живых системах концентрация НАД и НАД * Н2 = const. Любые факторы, ведущие к увеличению НАД * Н2 (алкогольная интоксикация) и дефекту НАД блокируют цикл Кребса. Следовательно, увеличение концентрации НАД стимулирует цикл трикарбоновых кислот.

Так как АТФ является косвенно конечным продуктом, то её избыток блокирует реакции, а значит АДФ стимулирует цикл (АДФ рассматривается как аллостерический активатор изоцитратдегидрогеназы). Стимулятором цикла является также и кислород, так как стимулирует работу АТФ. При повышении концентрации Са в клетке активируются дегидрогеназные реакции. Цикл Кребса активируется при сердечной недостаточности. Это объясняется тем, что миокард не может самостоятельно убрать избыток Са и эту роль берут на себя митохондрии, возрастает потребность в кислороде.

 

ТКАНЕВОЕ ДЫХАНИЕ.

Тканевое дыхание – один из процессов диссимиляции, по сути это есть биологическое окисление в тканях и клетках организма. В организме существует три пути потребления и утилизации кислорода:

1 – й путь: 90 – 95 % кислорода идёт на митохондриальное окисление.

2 – й путь: 5 – 10 % идёт на микросомальное окисление (в печени при поступлении токсинов).

3 – й путь: 2 – 5 % - перекисное окисление.

 

ДЫХАТЕЛЬНАЯ ЦЕПЬ.

В процессе окисления ацетилКоА в цикле Кребса восстановленные формы НАД * Н2 и ФАД * Н2 поступают в дыхательную цепь, где энергия электрона и протона трансформируется в энергию макроэргических связей АТФ. Дыхательная цепь – это совокупность дегидрогеназ, которые транспортируют электроны и протон с субстрата на кислород. Принцип функционирования дыхательной цепи основан на 1 – ом и 2 – ом законах термодинамики (1 – й закон: закон сохранения энергии; 2 – й закон: все системы стремятся к минимальной энергии).

Дыхательная цепь локализуется во внутренней мембране митохондрий и имеет два пути введения электрона и протона или два входа; дегидрогеназная цепь образует четыре комплекса:

1 – й вход – НАД - зависимый (поступают электрон и протон со всех НАД - зависимых реакций)

2 – й вход – ФАД - зависимый (аналогично)

Кофермент Q или убихинон – это гидрофобное соединение, является компонентом клеточной мембраны (находится на наружной поверхности), содержится в большой концентрации, относится к группе витаминов.

 

О

//

Н3СО СН3 СН3 СН3

/ /

Н3СО (СН2 – СН = С – СН2)9 – СН2 – СН = С – СН2

 

\\

О

 

КОФЕРМЕНТ Q.

ЦИТОХРОМ.

СН2

//

СН СН3

/ /


Н3С СН = СН2

N N

Fe

N N

Н3С СН3

 
 


\ \

СН2 СН2 – СН2 – СО2

\

СН2

\

СО2

 

ЦИТОХРОМ aa3 (цитохромоксидаза)

 

CH3 CH3 CH3

| | |

СН2 – СН – (СН2) 3 – СН –(СН2) 3 – CH

| |

HO - СН CH3 CH3

| |

H3C- - CH = CH2

 

N N

       
   


Fe

       
   


N N

 

O = C -

|

H | |

CH2 CH2 – CH2 – CO2

| |

CH2

|

CO2

 

Цитохромоксидаза имеет высокую степень сродства к О2 и может работать при его низких концентрациях. аа3 состоит из шести субъедениц, каждая из которых содержит гем и атом Cu. Две субъеденицы составляют цитохром а, а остальные четыре относятся к цитохрому а3.

Дыхательная цепь активно реагирует на чрезмерные нагрузки, яды. Так, например, барбитураты ингибируют перенос электрона и протона в первый комплекс дыхательной цепи, в ответ на это возникает энергетический голод ткани. Это происходит потому, что возникает недогрузка дыхательной цепи протонами и электронами. В результате снижается синтез АТФ и в ткани активируется производство и окисление эндогенной янтарной кислоты. Такое же действие оказывает и алкоголь, так как этанол является НАД – зависимым субстратом. Этанол монополизирует основной фонд НАД и превращает его в НАД * Н2. Дыхательная цепь перегружается НАД * Н2 и ткань не получает энергии за счёт окисления естественных субстратов. Такие яды, как цианиды, СО, Н2S, блокируют четвёртый комплекс дыхательной цепи. Если ингибирование первого комплекса приводит к активации трёх оставшихся и за счёт этого дыхательная цепь компенсируется, то при блокировании четвёртого комплекса работа дыхательной цепи не состоится, что приводит к смерти. Четыре комплекса, входящие в состав дыхательной цепи, неравноценны: в 1,3 и 4 происходит синтез АТФ (АДФ + Фн).

Работа всей дыхательной цепи состоит из двух составляющих: 1) образование АТФ (50% энергии депонируется в виде АТФ); 2) рассеивание остальных 50 % энергии в виде тепла.

Для оценки эффективности работы дыхательной цепи и окислительного фосфорилирования в 1939 году введён коэффициент Р / О –показатель степени спряжения фосфорилирования и дыхания. Р / О – отношение количества поглощённых молекул фосфата (в процессе АДФ + Фн) к количеству поглощённого кислорода. Так, если окисляются НАД – зависимые субстраты, то электроны в этом случае проходят все три стадии фосфорилирования и на образование АТФ уходят три молекулы Фн и один атом О2, поэтому Р / О = 3. Если окисляются ФАД – зависимые субстраты, то электроны проходят только две стадии фосфорилирования и тратится две молекулы Фн на атом О2, поэтому Р / О = 2. При окислении витамина С и адреналина, электроны поставляются прямо на цитохром с, поэтому они проходят только одну стадию фосфорилирования и поэтому Р / О = 1.

В ряде случаев некоторые пункты фосфорилирования могут «выключаться» - такое состояние называется разобщением окислительного фосфорилирования. В этом случае Р / О снижается: для

НАД – зависимых субстратов – ниже трёх, для ФАД – зависимых субстратов – ниже двух.

Исходя из первого закона термодинамики, в разобщённых митохондриях увеличивается теплообразование. Это происходит за счёт того, что та энергия электронов, которая должна была быть использована для синтеза АТФ в «выключенной» стадии фосфорилирования, рассеивается в виде тепла. Процесс разобщения окислительного фосфорилирования лежит в основе лихорадки, вызванной бактериями, вирусами и другими агентами. Разобщение резко увеличивается при охлаждении организма. Работа митохондрий при всех «выключенных» стадиях фосфорилирования называется сопряжённой, в противном, выше описанном случае, разобщённой и дыхание при этом называется свободным. В качестве разобщителей окислительного фосфорилирования выступают слабые гидрофобные кислоты (жирные кислоты), тироидные гормоны, лекарства.

Дыхательная цепь имеет механизм шунтирования: сброс электрона и протона с НАД на цитохромы или с НАД на межмембранные дегидрогеназы, не нарушая мембрану и гладкую эндоплазматическую сеть. Такой перенос характерен для печени. При воздействии какого – либо блокатора, возникает блок в первом комплексе дыхательной цепи. Происходит накопление НАД * Н2, и становится реальной угроза гипоксии и печень может погибнуть. Чтобы этого не произошло, происходит сброс НАД * Н2 с митохондриальной дыхательной цепи на микросомальную.

 

 





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 1085 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2240 - | 2105 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.