Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Модельдеудің турлерін атаңыз. Анықтамаларын беріңіз




Модель анықтамасын беріңіз. Басқару объекттердің математикалық модельдерін құрудың аналитикалық және тәжірибелік принциптері.

Модельдеу - әртүрлі процестер мен құбылыстарды зерттеуге қолданатын көп тараған әдіс. Процестердің күрделілігі процестің өтуін анықтайтын параметрлерінің көп санымен, параметрлер арасындағы әртүрлі өзара байланыстар және өзара әсерлермен анықталады. Біздер зерттеулерді жеңілдету мақсатымен осындай ақпараттар көлемін азайтуға, таңдалынатын мүмкіншіліктер санын шектеуге тырысамыз. Бұл мақсатқа жету үшін процестерді зерттеуге модельді яғни зерттелетін процестің қажетті бағытта шектелген бөлек сипаттамаларын бейнелейтін қарапайымдалған жүйені қолданамыз. Берілген құбылыс, процесс немесе техникалық жүйені тікелей зерттеу орнына модель деп аталатын басқа құбылысқа, процеске немесе техникалық жүйеге көшу модельдеудің мәнісі болып табылады. Осындай көшудің негізгі мақсаты – зерттеуді жеңілдету, біздерге керекті шамаларды анықтауға қол жеткізу, зерттелетін құбылыстарды жасанды жаңадан өңдеу.

Математикалық модельдерді құрудың екі принципиалды әртүрлі амалдары бар.

Модельді таңдағанда зерттелетін процестің жүріс-тұрысын анықтайтын физика-химия заңдылықтарды есепке алуда бірінші амал негізделген. Осындай модельдер аналитикалық модельдер деп аталады. Басқа сөзбен айтқанда, модель теңдеулерін алу үшін зат пен энергияны сақтау фундаменталды заңдылықтары қолданылады, объектте өтетін физикалық және химиялық процестерді теориялық анализдеп модель теңдеулері шығарылады. Мұнда тәжірибелерді өткізу керек емес, сондықтан процестері жақсы оқылған объекттері жобалау қадамында олардың статикалық және динамикалық сипаттамаларын анықтау үшін осы әдістерді қолдануға болады. Объектті толығымен бейнелеген кезде алынған жүйенің есебін табу өте қиын.

Екінші амал "қара жәшік" концепциясында негізделген, яғни объекттің ішкі құрамы белгісіз, одан да зор, зерттеушіге керек те емес деп есептелінеді. Барлық ақпарат объектті пассивті және активті тәжірибелерде бақылаудан алынады, басқа сөзбен айтқанда процесс қасиеттерін "кіріс -шығыс" қатынас арқылы бейнелеген жеткілікті деп есептелінеді. Әдетте рұқсат етілген модельдер кластары ізделінетін параметрлер арқылы сызықты болатын белгілі функциялар жүйесі бойынша жіктеу қатарлары ретінде таңдалынады. Осындай жолмен алынған модельдер эмпирикалық (тәжірибелік) деп аталады. Тәжірибелік модельдердің артықшылығы параметрлердің өзгеру диапазонының кіші аралығында объект қасиеттері дәл бейнелетіндігі және математикалық бейнелеудің қарапайымдылығы. Бұл модельдердің негізгі кемшілігі – теңдеуге кіретін параметрлер мен объект сипаттамалары арасындағы функционалдық байланысты анықтауға мүмкін емес.. Сонымен бірге, осындай модельдерді басқа біртектес объекттерге қолдануға болмайды.

Аналитикалық және тәжірибелік әдістер арасында ақпараттық жағынан және қолдану аймағы жағынан принципиалды айырмашылықтары бар. Аналитикалық әдістер екі сұраққа жауап бере алады: объекттің жүріс-тұрысы қандай және неге олай? Екінші түрдегі модельдер тек қана "қандай?" деген сұраққа жауап бере алады. Эмпирикалық әдістер тек қана белгілі жұмыс істейтін қондырғыларды автоматтандыру және оптимизациялауға лайықты.

Аналитикалық әдістер эмпирикалық әдістерге қарағанда жалпы болып табылады және олардың көмегімен алынған нәтижелер фундаменталды болады. Бірақ бұл жеңіл берілмейді. Олар эмпирикалық әдістерге қарағанда күрделі және қиындықтар аналитикалық модельді құру кезінен бастап туады. Егер де объектті "қара жәшік" ретінде бейнелеу үшін статистика мен автоматты реттеу теориясынан білімдер жеткілікті болса, аналитикалық модельдерді құру үшін физика, химия, гидродинамика, т.б. пәндердің әртүрлі салаларынан білімдері мен түрлі-түрлі математикалық аппараты қажет. Сонымен бірге бұл қиындықтар аналитикалық модельдердің үлкен ақпараттық сыйымдылығымен орнын толтырады.

Модельдеудің турлерін атаңыз. Анықтамаларын беріңіз.

Модельді жасаудың кейбір мақсаттары мен негізгі зерттеу түрлерін белгілеуге болады:

- мәнін түсіну құралы ретінде модель айнымалылардың өзара байланыстарын, олардың уақыт бойынша өзгеру айырмашылықтарын, маңызды заңдарын анықтауға мүмкіндік береді. Модельді жасаған кезде зерттелетін объекттің құрамы түсінікті болады, маңызды себеп-салдар байланыстары анықталады. Модельді құрастырған кезде бірте-бірте модельге қойылатын талаптар қөзқарасы жағынан бастапқы объекттің қасиеттері маңызды және маңызды емес деп бөлінеді. Бастапқы объект жұмысының біздерге қажетті қасиеттеріне қатыс болатын ерекшеліктері ізделінеді. Белгілі мағына жағынан ғылыми қызмет табиғат құбылыстарының модельдерін құрастырудан және зерттеулерден тұрады;

- болжау құралы ретінде модель объекттің жүріс-тұрысын болжауды үйреніп, әртүрлі модель басқару нұсқаларын сынап, оны басқаруға мүмкіндік береді. Әдетте нақты объектілермен тәжірибе өткізу ыңғайсыз, кейбір кезде қауіпті немесе кейбір себептерден - тәжірибе ұзақтығы, объекттің бүлінуі немесе жойылу қауіп-қатерінен, нақты объекттің жоқтығынан (мысалы, ол әлі жобалануда) мүмкін емес;

- құрастырылған модельдерді параметрлердің оптималды қатынастарын табуға, кейбір ерекше режимдерін зерттеуге қолдануға болады;

- кейбір кезде модель бастапқы объектіні оқыту мақсатымен орын басады, мысалы, персоналды нақты жағдайдағы жұмысқа дайындағанда тренажер ретінде немесе виртуалды зертханада зерттелетін объект ретінде қолдануда. Орындалатын модульдер түрінде жасалған модельдер басқару жүйелерді стендтерде зерттегенде басқару объектілердің имитаторлары ретінде қолданылады, жобалаудың бастапқы кезеңдерінде болашақ аппаратты жасалатын басқару жүйелердің өзінің орнын басады.

Модельдерді жағдайға байланысты екі топқа бөлуге болады: материалды және идеалды; сондықтан заттық және абстрактты модельдеуді қарастыруға болады. Заттық модельдеудің негізгі түрлері физикалық және аналогты модельдеу болып табылады. Нақты объектке оның үлкейтілген немесе кішірейтілген көшірмесі сәйкес қойылса, модельдеуді (макеттеуді) физикалық деп атайды. Бұл көшірме ұқсастық теориясы негізінде зерттелетін құбылысты сипаттайтын негізгі саңдардан алынған ұқсастық критерийлер бойынша жасалады, сондықтан модельде қажетті қасиеттер сақталынды деуге болады. Физикалық модельдерде белгілі зерттеуге қажетті бастапқы объекттің геометриялық пропорцияларынан басқа да қасиеттері сақталынады (мысалы, объект материалы немесе бояу гаммасы). Мысалы, ұшақты жобалаған кезде аэродинамикалық қасиеттері бірдей болатын оның макеті жасалады. Физикалық модельді жасағанда келесіні есепке алу керек: нақты жүйеге қарағанда талдаудың қуатты әдістерін қолдануға мүмкіндік беретіндей модельмен жұмыс істеу қарапайым және қауіпсіз болуы керек, Қарапайым жүйелер үшін (мысалы, гидравликалық немесе бірфазалы жылулық жүйелер) ұқсастық принципі және физикалық модельдеу өзін дәлелдейді, себебі критерийлер сандары шектелген болады. Физикалық модельдеудің негізгі кемшілігі – объекттің әр нұсқасына өзінің моделін жасау керек, бұл жағдай материалды ресурстарын және жұмыстың көп көлемін талап етеді. Сонымен физикалық модельдеуді қолданудың аймағы шектелген, сондықтан күрделі жүйелерді зерттеудің негізгі әдісі математикалық модельдеу болып табылады.

Аналогты модельдеу бастапқы объектті басқа физикалық табиғаты бар, бірақ жүріс-тұрысы бастапқы объектісімен бірдей болатын объектпен алмастыруда негізделген. Мысалы, тербелістер мен резонансты зерттегенде механикалық жүйелер заңдылықтарын, сонымен бірге электр тізбектерін қолдануға болады. Аналогты модельдеуде орынбасу объектте керекті ерекшеліктерін көріп, оларды дұрыс түсіну өте маңызды. Физикалық және аналогты модельдеу зерттеудің негізгі әдісі ретінде модельмен тәжірибе жасауды талап етеді, бірақ бұл тәжірибе бастапқы объекттегі тәжірибеден тартымды болады. Кезінде аналогты есептеу машиналары кең қолданылған. Олардың көмегімен модельдеу өткізу электр құбылыстарының басқа физикалық табиғаты бар құбылыстармен ұқсас болуында негізделген. Мысалы, электр тізбектегі тербелістер ракетаның бұрыш тербелістеріне ұқсас, ал электр тізбекпен тәжірибелерді өткізу арзан және қауіпсіз (ұшып баражатқан ракетаға қарағанда). Аналогты машиналарда жаңадан өңделетін электр тербелістерді арнайы аспаптармен – осцилографтармен бақылап, модельдің жүріс-тұрысын «көруге» болады.

Идеалды модель дегеніміз - нақты немесе елестететін объектілердің абстрактты бейнелері. Идеалды модельдеуді екі түрге бөледі: интуитивті және таңбалы. Қолданатын модель болғанымен, оны бейнелей алмай, бірақ оның көмегімен қоршаған ортаны болжап немесе түсініктіру өткізсе, интуитивті модель туралы әңгімелегеніміз. Осы мағынада әр адамның өмірлік тәжірибесі оның қоршаған ортасының моделі деп есептеуге болады. Әртүрлі жағдайда адам миы шешім қабылдау есебін қалай шешетінін біз әлі білмейміз.

Модель ретінде белгілерді немесе символдарды: сұлбалар, графиктер, сызбалар, әртүрлі тілдердегі мәтіндер, сонымен бірге формалды, математикалық формулалар және теорияларды қолданатын модельдеу таңбалы модельдеу деп аталады. Таңбалы модельдеуге міндетті түрде қатынасатын интерпретаторы болуы керек (әдетте адам болады). Сызбалар, мәтіндер, формулалардың өз бетінше ешқандай мағынасы жоқ, оларды түсінетін және күнделікті қызметінде қолданатын біреу болуы керек. Таңбалы модельдеудің маңызды түрі математикалық модельдеу болып табылады. Объекттердің физикалық табиғатынан дерексіздендіріп, математика идеалды объекттерді оқиды. Математикалық модельдеу табиғат заңдарының саны шектеулігінде және ұқсастық принциптерінде негізделген. Яғни басқа сөзбен айтқанда әртүрлі физикалық табиғаты бар құбылыстар бірдей математикалық тәуелділіктермен бейнеленулері мүмкін. Мысалы, дифференциалдық теория көмегімен аталып кеткен электр немесе механикалық тербелістерді жалпы түрде оқуға, сонан соң алынған білімдерді белгілі физикалық табиғаты бар объектті зерттеуге қолдануға болады.

Математикалық өрнектермен немесе алгоритмдермен формалданған жүйе бейнеленуі математикалық модельдеу деп аталады. Кез келген физикалық шамалардан тұратын математикалық өрнекті процестің математикалық моделі ретінде қарастыруға болады. Физикалық модельдеуге қарағанда математикалық модельдеу оригиналдың тек қана математикалық бейнелеуі бар және математикалық өрнектермен байланысқан параметрлерін зерттеуге болады. Сонымен бірге зерттелетін процестің физикасы сақталмайды, бір теңдеулер табиғаты жағынан әртүрлі құбылыстарды бейнелеуге мүмкіндік беріп, объекттің жүріс-тұрысын толық бейнелемей, оның бөлек функционалды байланыстарын табуға мүмкіндік береді. Сонымен, нақты объекттің математикалық моделі деген берілген физикалық объектке сәйкес қойылған математикалық объект деуге болады. Әрине, нақты физикалық байланыстарды көрсететін математикалық тәуелділіктерді анықтайтын өрнектер белгілі болу керек. Келешекте біздер тек қана математикалық модельдер туралы әңгімелейміз.

Математикалық модельдеудің маңызды түрі – компьютерлік модельдеу. Әртүрлі қызмет бағдарламаларды қосындылап (мысалы, уақыт бойынша сурет немесе графиктерді салатын), математикалық модельдің бағдарламалық іске асырылуы компьютерлік модель деп аталады. Компьютермен қабылданып, онымен интерпретацияланса, компьютерлік модель физикалық модельдің қасиеттерін білдіреді. Компьютерлік модель физикалық құрылғы ретінде сынақ стендтер, тренажерлар, виртуалды зертханалар құрамына кіруі мүмкін. Бұл модельдің арнайы түрі, өзінде абстрактты және физикалық қасиетттерін қабылдайтын, көп деген пайдалы мүмкіндіктері бар. Солардың ішіндегі бастысы – модельді жасау және өзгерту өте қарапайым процесс болып табылады. Сонымен бірге алынатын нәтижелерінің дәлдіктері өте жоғары және модельдердің функционалды қүрделі болатынын атап кету керек. Сондықтан, қазірде модельдеу деп әдетте компьютерлік модельдеуді атайды.

Математикалық модельді құрастыру физика, химия, биология пәндерінен белгілі заңдарды қолданумен орындалады. Алынған модельді аналитикалық жолмен зерттеуге болады, бірақ көбінесе оны орындайтын бағдарлама дайындалады. Компьютерлік модельдеудің бастапқы қадамдарында осы бағдарламалар жоғарғы деңгейлі бағдарламалау тілдерде жасалған, ол кезде қолданылатын бағдарламалау технологиялар модельдерді жасауға өте көп уақытты талап ететін. Қазірде математикалық модельді модельдеу бағдарламаға түрлендіру процесін автоматтандыратын модельдеуге арналған көп деген жүйелер, модельдеу пакеттер өңделген. Қазіргі пакеттерді қолданушының көзқарасы жағынан компьютерлік модельді құрастыру негізінде модельдің математика тіліндегі бейнелеуін қолданылатын жүйенің тіліне көшіруге және ұсынылған сандық әдістердің ішінен керектісін таңдауда тұрады.

Математикалық модельдерге қойылатын талаптар: дәлдік – бұл қасиет модель көмегімен болжанған объекттің параметрлерінің мәндері ақиқат мәндермен сәйкестігінің дәрежесін көрсетеді; компьютер уақытының шығындарының тиімділігі; универсалдық яғни біртекті объектілер топтарына анализдеуге қолдануға болатындығы.





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 1107 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.