Докажем теорему для неопределённостей вида .
Пусть, для начала, предел отношения производных конечен и равен . Тогда, при стремлении к справа, это отношение можно записать как , где — O(1). Запишем это условие:
.
Зафиксируем из отрезка и применим теорему Коши ко всем из отрезка :
, что можно привести к следующему виду:
.
Для , достаточно близких к , выражение имеет смысл; предел первого множителя правой части равен единице (так как и — константы, а и стремятся к бесконечности). Значит, этот множитель равен , где — бесконечно малая функция при стремлении к справа. Выпишем определение этого факта, используя то же значение , что и в определении для :
.
Получили, что отношение функций представимо в виде , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и был меньше , значит, предел отношения функций действительно равен .
Если же предел бесконечен (допустим, он равен плюс бесконечности), то
.
В определении будем брать ; первый множитель правой части будет больше 1/2 при , достаточно близких к , а тогда .
Для других баз доказательства аналогичны приведённым.
Примеры
·
·
Здесь можно применить правило Лопиталя 3 раза, а можно поступить иначе. Нужно разделить и числитель, и знаменатель на x в наибольшей степени(в нашем случае ). В этом примере получается:
· ;
· при .
Исследование функции и построение ее графика
При построении графика функции необходимо провести ее предварительное исследование. Примерная схема исследования функции с целью построения ее графика имеет следующую структуру:
1. Область определения и область допустимых значений функции.
2. Четность, нечетность функции.
3. Точки пересечения с осями.
4. Асимптоты функции.
5. Экстремумы и интервалы монотонности.
6. Точки перегиба и промежутки выпуклости, вогнутости.
7. Сводная таблица.
Задание. Исследовать функцию и построить ее график.
Решение. 1) Область определения функции.
2) Четность, нечетность.
Функция общего вида.
3) Точки пересечения с осями.
а) с осью :
то есть точки
б) с осью : в данной точке функция неопределенна.
4) Асимптоты.
а) вертикальные: прямые и - вертикальные асимптоты.
б) горизонтальные асимптоты:
то есть прямая - горизонтальная асимптота.
в) наклонные асимптоты :
Таким образом, наклонных асимптот нет.
5) Критические точки функции, интервалы возрастания, убывания.
Найдем точки, в которых первая производная равна нулю или не существует: для любого из области определения функции; не существует при и .
Таким образом, функция убывает на всей области существования. Точек экстремума нет.
6) Точки перегиба, интервалы выпуклости, вогнутости.
Найдем точки, в которых вторая производная равна нулю или не существует: ; при и вторая производная не существует.
Таким образом, на промежутках и функция вогнута, а на промежутках и - выпукла. Так как при переходе через точку вторая производная поменяла знак, то эта точка является точкой перегиба.
7) Эскиз графика.
17. Использование производной для исследования свойств функции и построения ее графика.
Связь между непрерывностью и дифференцируемостью функции. Если функция f (x) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.
П р и м е р. | Функция y = | x | (рис.3) всюду непрерывна, но она не имеет производной при x = 0, так как в этой точке не существует касательной к графику этой функции. (Подумайте, почему?) |
План исследования функции. Для построения графика функции нужно:
1) найти область определения и область значений функции,
2) установить, является ли функция чётной или нечётной,
3) определить, является ли функция периодической или нет,
4) найти нули функции и её значения при x = 0,
5) найти интервалы знакопостоянства,
6) найти интервалы монотонности,
7) найти точки экстремума и значения функции в этих точках,
8) проанализировать поведение функции вблизи “особых” точек
и при больших значениях модуля x.
18. Определение и свойства неопределённого интеграла.