Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Отношение бесконечно больших




Докажем теорему для неопределённостей вида .

Пусть, для начала, предел отношения производных конечен и равен . Тогда, при стремлении к справа, это отношение можно записать как , где — O(1). Запишем это условие:

.

Зафиксируем из отрезка и применим теорему Коши ко всем из отрезка :

, что можно привести к следующему виду:

.

Для , достаточно близких к , выражение имеет смысл; предел первого множителя правой части равен единице (так как и — константы, а и стремятся к бесконечности). Значит, этот множитель равен , где — бесконечно малая функция при стремлении к справа. Выпишем определение этого факта, используя то же значение , что и в определении для :

.

Получили, что отношение функций представимо в виде , и . По любому данному можно найти такое , чтобы модуль разности отношения функций и был меньше , значит, предел отношения функций действительно равен .

Если же предел бесконечен (допустим, он равен плюс бесконечности), то

.

В определении будем брать ; первый множитель правой части будет больше 1/2 при , достаточно близких к , а тогда .

Для других баз доказательства аналогичны приведённым.

 

 

Примеры

·

·
Здесь можно применить правило Лопиталя 3 раза, а можно поступить иначе. Нужно разделить и числитель, и знаменатель на x в наибольшей степени(в нашем случае ). В этом примере получается:

· ;

· при .

 

Исследование функции и построение ее графика

При построении графика функции необходимо провести ее предварительное исследование. Примерная схема исследования функции с целью построения ее графика имеет следующую структуру:

1. Область определения и область допустимых значений функции.

2. Четность, нечетность функции.

3. Точки пересечения с осями.

4. Асимптоты функции.

5. Экстремумы и интервалы монотонности.

6. Точки перегиба и промежутки выпуклости, вогнутости.

7. Сводная таблица.

Задание. Исследовать функцию и построить ее график.

Решение. 1) Область определения функции.

2) Четность, нечетность.

Функция общего вида.

3) Точки пересечения с осями.

а) с осью :

то есть точки

б) с осью : в данной точке функция неопределенна.

4) Асимптоты.

а) вертикальные: прямые и - вертикальные асимптоты.

б) горизонтальные асимптоты:

то есть прямая - горизонтальная асимптота.

в) наклонные асимптоты :

Таким образом, наклонных асимптот нет.

5) Критические точки функции, интервалы возрастания, убывания.

Найдем точки, в которых первая производная равна нулю или не существует: для любого из области определения функции; не существует при и .

Таким образом, функция убывает на всей области существования. Точек экстремума нет.

6) Точки перегиба, интервалы выпуклости, вогнутости.

Найдем точки, в которых вторая производная равна нулю или не существует: ; при и вторая производная не существует.

Таким образом, на промежутках и функция вогнута, а на промежутках и - выпукла. Так как при переходе через точку вторая производная поменяла знак, то эта точка является точкой перегиба.

7) Эскиз графика.

17. Использование производной для исследования свойств функции и построения ее графика.

Связь между непрерывностью и дифференцируемостью функции. Если функция f (x) дифференцируема в некоторой точке, то она непрерывна в этой точке. Обратное неверно: непрерывная функция может не иметь производной.

П р и м е р. Функция y = | x | (рис.3) всюду непрерывна, но она не имеет производной при x = 0, так как в этой точке не существует касательной к графику этой функции. (Подумайте, почему?)

План исследования функции. Для построения графика функции нужно:

 

1) найти область определения и область значений функции,

2) установить, является ли функция чётной или нечётной,

3) определить, является ли функция периодической или нет,

4) найти нули функции и её значения при x = 0,

5) найти интервалы знакопостоянства,

6) найти интервалы монотонности,

7) найти точки экстремума и значения функции в этих точках,

8) проанализировать поведение функции вблизи “особых” точек

и при больших значениях модуля x.

 

18. Определение и свойства неопределённого интеграла.





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 751 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2332 - | 2011 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.