Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Билет 7 Непрерывность функции в точке




Функция называется непрерывной в точке если:

1. функция определена в точке a и ее окрестности

2. существует конечный предел функции f(x) в точке а.

3. это предел равен значению функции в точке а,т.е .

 

При нахождении предела функции y=f(x) которая является непрерывной, можно переходить к пределу под знаком функции, то есть.

 

Билет 8 Классификация точек разрыва функции.

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.

 

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.

Если односторонний предел (см. выше), то функция называется непрерывной справа

Если односторонний предел (см. выше) , то функция называется непрерывной слева.

Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.

Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

Теоре́ма Больца́но — Коши́ о промежуточных значениях непрерывной функции это утверждение, что если непрерывная функция принимает два значение, то она принимает и любое значение между ними.

 

Формулировка

Пусть дана непрерывная функция на отрезке Пусть также и без ограничения общности предположим, что Тогда для любого существует такое, что

 

Определение производной.

 

Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке). Процесс вычисления производной называется дифференци́рованием. Обратный процесс — интегрирование.

 

11.

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f (x) в этой точке.

Экономический смысл производной: производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

 

 

Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.

· Пусть функция определена в некоторой окрестности точки , и дифференцируема в ней: . Касательной прямой к графику функции в точке называется график линейной функции, задаваемой уравнением

.

· Если функция имеет в точке бесконечную производную то касательной прямой в этой точке называется вертикальная прямая, задаваемая уравнением

Прямо из определения следует, что график касательной прямой проходит через точку . Угол между касательной к кривой и осью Ох удовлетворяет уравнению

где обозначает тангенс, а — коэффициент наклона касательной. Производная в точке равна угловому коэффициенту касательной к графику функции в этой точке.

Пусть и Тогда прямая линия, проходящая через точки и задаётся уравнением

Эта прямая проходит через точку для любого и её угол наклона удовлетворяет уравнению

В силу существования производной функции в точке переходя к пределу при получаем, что существует предел

а в силу непрерывности арктангенса и предельный угол

Прямая, проходящая через точку и имеющая предельный угол наклона, удовлетворяющий задаётся уравнением касательной:

 

Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.

1. Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания.

2. Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

3. Длина отрезка касательной, проведённой к окружности единичного радиуса, взятого между точкой касания и точкой пересечения касательной с радиусом, является тангенсом угла между этим радиусом и направлением от центра окружности на точку касания.

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 1088 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2360 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.