Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Стационарные и нестационарные временные ряды




Важное значение в анализе временных рядов имеют стационарные временные ряды, вероятностные свойства которых не изменяются во времени.

Рассмотрим два ряда y1, y2,…, yn и y1+τ, y2+τ,…, yn+τ. Эти ряды называются сдвинутыми относительно друг друга на τ единиц или с лагом τ.

Временной ряд yt (t=1, 2,…, n) называется строго стационарным, если совместное распределение вероятностей n наблюдений y1, y2,…, yn такое же, как и n наблюдений y1+ τ, y2+ τ,…, yn+ τ при любых n, t, τ.

Таким образом, свойство строго стационарных рядов не зависят от момента времени t, т. е. в таких рядах от момента времени t не зависит закон распределения и числовые характеристики временного ряда.

Степень тесноты связи между последовательными наблюдениями временного ряда y1,y2,…, yn и y1+τ, y2+τ,…, yn+τ может быть оценена с помощью коэффициента корреляции:

Так как коэффициент ρ(r) измеряет корреляцию членами одного и того же временного ряда, то его называют коэффициентом автокорреляции, а зависимость ρ от r — автокорреляционной зависимостью.

В силу стационарности временного ряда yt автокорреляционная функция ρ(t) зависит только от лага τ и является четной функцией. Таким образом, при изучении автокорреляционной функции можно ограничится только положительным сдвигом τ.

Статистической оценкой ρ является выборочный коэффициент автокорреляции, определяемый по формуле:

Функцию r(τ) называют выборочной автокорреляционной функцией, а её график — коррелограммой.

При расчете r(τ) следует помнить, что с увеличением τ число n-τ пар наблюдений в значении случайной величины уменьшается, поэтому лаг τ должен быть таким, чтобы n-τ было достаточно для вычисления r(τ).

Обычно ориентируются на соотношении τ. Для стационарного временного ряда с увеличением лага τ взаимосвязь между членами временных рядов yt и yt+τ ослабевает, и автокорреляционная функция должна убывать по абсолютной величине.

Наряду с автокорреляционной функцией при исследовании стационарных временных рядов рассматривается частная автокорреляционная функция ρчаст(r), где ρчаст — это частный коэффициент корреляции между рядами yt и yt+τ, то есть коэффициент корреляции между yt и yt+τ при устранении влияния промежуточных членов временных рядов.

Статистической оценкой ρчаст является выборочная автокорреляционная функция rчаст (τ), где rчаст — выборочный частный коэффициент корреляции. Выборочный частный коэффициент автокорреляции первого порядка между членами ряда yt и yt+2 (при устранении влияния промежуточного ряда yt+1) может быть вычислен по формуле:

 





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 927 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2211 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.