Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейный коэффициент детерминации. 7 страница




 

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, то исследуемый ряд содержит только:

+ тенденцию;

- циклические колебания с периодичностью в один момент времени;

- сильную нелинейную тенденцию;

- случайную компоненту.

 

Отсутствие автокорреляции в остатках предполагает, что значения ___________ не зависят друг от друга.

+ остатков;

- результата;

- независимых переменных;

- фактора.

 

Коррелограммой называется:

+графическое отображение автокорреляционной функции;

- аналитическое выражение для автокорреляционной функции;

- графическое отображение регрессионной функции;

- процесс экспериментального нахождения значений автокорреляционной функции.

 

Известны значения аддитивной модели временного ряда: - значение уровня ряда, =15 - значение тренда, =2 - значение случайной компоненты. Определите значение сезонной компоненты .

- 0;

+ 13;

- 1;

- -1.

 

Может ли ряд содержать только одну из компонент?

- не может, так как временной ряд не содержит компонент, влияющих на его уровни;

+ может, если другие две компоненты не участвуют в формировании уровней ряда;

- может, если он представлен данными, описывающими совокупность различных объектов в определенный момент времени;

- не может, так как уровень ряда должен формироваться под воздействием всех трех компонент.

 

Временной ряд характеризует …

- совокупность последовательных моментов (периодов) времени;

+ данные, описывающие один объект за ряд последовательных моментов (периодов) времени;

- зависимость последовательных моментов (периодов) времени;

- данные, описывающие совокупность различных объектов в определенный момент (период) времени.

 

Значения коэффициента автокорреляции рассчитывается по аналогии с …

- линейным коэффициентом регрессии;

- линейным коэффициентом детерминации;

- нелинейным коэффициентом корреляции;

+ линейным коэффициентом корреляции.

 

«Белым шумом» называется:

+ чисто случайный процесс;

- функциональный процесс;

- неслучайный процесс;

- регрессионный процесс.

 

Основной задачей моделирования временных рядов является …

- исключение уровней из совокупности значений временного ряда;

+ выявление и придание количественного значения каждой из трех компонент;

- исключение значений каждой из трех компонент из уровней ряда;

- добавление новых уравнений к совокупности значений временного ряда.

 

Значения коэффициента автокорреляции второго порядка характеризует связь между:

- исходными уровнями и уровнем второго временного ряда;

- исходными уровнями и уровнями другого ряда, сдвинутыми на 2 момента назад;

- двумя временными рядами;

+ исходными уровнями и уровнями этого же ряда, сдвинутыми на 2 момента времени.

 

При построении модели временного ряда проводится:

- расчет каждого уровня временного ряда;

+ расчет значений компонент для каждого уровня временного ряда;

- расчет средних значений компонент для временного ряда в целом;

- расчет последующих и предыдущих значений уровней временного ряда.

 

Стационарность временного ряда означает отсутствие …

+ тренда;

- наблюдений по уровням временного ряда;

- значений уровней ряда;

- временной характеристики.

 

Структуру временного ряда можно выявить с помощью коэффициента …

+ автокорреляции уровней ряда;

- авторегрессии уровней ряда;

- регрессии уровней ряда;

- автодетерминации уровней ряда.

 

Модель временного ряда предполагает …

- независимость значений экономического показателя от времени;

- пренебрежение временными характеристиками ряда;

+ зависимость значений экономического показателя от времени;

- отсутствие последовательности моментов (периодов) времени, в течении которых рассматривается поведение экономического показателя.

 

Стационарность временного ряда не подразумевает отсутствие …

- сезонных колебаний;

- стохастического процесса с наличием тренда;

+ стационарного стохастического процесса;

- конъюнктурных сдвигов.

 

Если наиболее высоким оказался коэффициент автокорреляции третьего порядка, то исследуемый ряд содержит …

+ сезонные колебания с периодичностью в три момента времени;

- линейный тренд, проявляющийся в каждом третьем уровне ряда;

- случайную величину, влияющую на каждый третий уровень ряда;

- нелинейную тенденцию полинома третьего порядка.

 

Если факторы входят в модель как сумма, то модель называется:

- суммарной;

- мультипликативной;

+ аддитивной;

- производной..

 

Экономические временные ряды, представляющие собой данные наблюдений за ряд лет, как правило, являются …

- стационарными временными рядами;

+ функционально зависящими от времени временными рядами;

- строго возрастающими временными рядами;

- нестационарными временными рядами.

 

Значения коэффициента автокорреляции первого порядка равно 0,9. Следовательно …

- линейная связь между последующим и предыдущим уровнями не тесная;

+ линейная связь между последующим и предыдущим уровнями тесная;

- нелинейная связь между последующим и предыдущим уровнями тесная;

- линейная связь между временными рядами двух экономических показателей тесная.

 

Под лагом подразумевается число …

+ периодов, по которым рассчитывается коэффициент автокорреляции;

- уровней исходного временного ряда;

- пар значений, по которым рассчитывается коэффициент автокорреляции;

- уровней ряда, сдвинутых при расчете коэффициента автокорреляции.

 

Стационарность характерна для временного ряда:

- с положительной динамикой роста;

- с отрицательной динамикой роста;

- содержащего сезонные колебания;

+ типа «белый шум».

 

При моделировании временных рядов экономических показателей необходимо учитывать …

- конструктивный характер уровней исследуемых показателей;

+ стохастический характер уровней исследуемых показателей;

- функциональный характер уровней исследуемых показателей;

- не зависящий от времени уровень исследуемых показателей.

 

Модель временного ряда не предполагает …

- зависимость значений экономического показателя от времени;

+ независимость значений экономического показателя от времени;

- учет временных характеристик;

- последовательность моментов (периодов) времени, в течении которых рассматривается поведение экономического показателя.

 

Уровнем временного ряда является …

+ значение временного ряда в конкретный момент (период) времени;

- среднее значение временного ряда;

- совокупность значений временного ряда;

- значение конкретного момента (периода) времени.

 

Параметры уравнения тренда определяются ________методом наименьших квадратов

+ обычным;

- двухшаговым;

- обобщенным;

- косвенным.

 

Максимальный лаг связан с числом уровней временного ряда следующим соотношением не более …

- ;

+ ;

- ;

- .

 

 

Тема Модели временных рядов (Задачи)

 

На основе помесячных данных за последние 6 лет была построена аддитивная модель временного потребления тепла. Скорректированные значения сезонной компоненты приведены в таблице:

Уравнение тренда выглядит так:

Значение сезонной компоненты за март, а также точечный прогноз потребления тепла на 1 квартал следующего года равны:

+—9; 1290,4

— –9; 1290,4

—9; 1226,4

—12; 1226,4

 

 

На основе помесячных данных за последние 5 лет была построена аддитивная модель временного потребления тепла. Скорректированные значения сезонной компоненты приведены в таблице:

Январь + 17 май - 20 сентябрь - 10
февраль + 15 июнь - 34 октябрь ?
март + 10 июль - 42 ноябрь +22
апрель - 4 август - 18 декабрь +27

Уравнение тренда выглядит так:

Значение сезонной компоненты за октябрь, а также точечный прогноз потребления тепла на 1 квартал следующего года равны:

+—37; 1615

—–37; 1615,2

—37; 1845

—4; 1845

 

На основе помесячных данных за последние 8 лет была построена аддитивная модель временного потребления тепла. Скорректированные значения сезонной компоненты приведены в таблице:

Январь + 42 Май - 10 сентябрь - 10
февраль + 21 Июнь - 50 октябрь + 12
март ? Июль - 35 ноябрь +22
апрель - 1 Август - 16 декабрь +28

Уравнение тренда выглядит так:

Значение сезонной компоненты за март, а также точечный прогноз потребления тепла на 1 квартал следующего года равны:

+—-3; 1611,6

—3; 1617,6

—3; 1526,4

—7; 1226,4

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,6

II квартал – 0,8

III квартал – 0,7

IV квартал -?

Уравнение тренда имеет вид:

Значение сезонной компоненты за IV квартал и прогноз на II и III кварталы следующего года равны:

+—0,90; 5,28 и 4,55

—1,00; 10,72 и 5,28

—0,90; 4,55 и 5,28

—0,80; 5,28 и 10,72

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,5

II квартал –?

III квартал – 0,6

IV квартал – 0,8

Уравнение тренда имеет вид:

Значение сезонной компоненты за II квартал и прогноз на II и III кварталы следующего года равны:

+—1,10; 16,06 и 8,82

—1,20; 21,75 и 16,06

—1,10; 8,82 и 16,06

—1,00; 16,06 и 21,75

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,2

II квартал – 0,8

III квартал –?

IV квартал – 1,4

Уравнение тренда имеет вид:

Значение сезонной компоненты за III квартал и прогноз на II и III кварталы следующего года равны:

+—0,60; 4,32 и 3,12

—0,70; 6,72 и 4,32

—0,60; 3,12 и 4,32

—0,50; 4,32 и 6,72

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,2

II квартал – 0,9

III квартал – 0,5

IV квартал -?

Уравнение тренда имеет вид:

Значение сезонной компоненты за IV квартал и прогноз на II и III кварталы следующего года равны:

+—1,40; 1,71 и 0,85

—1,60; 7,48 и 4,57

—1,40; 1,36 и 4,57

—1,30; 2,28 и 7,48

 

На основе поквартальных данных построена мультипликативная модель некоторого временного ряда. Скорректированные значения сезонной компоненты равны:

I квартал – 1,5

II квартал – 0,7

III квартал –?

IV квартал – 1,2

Уравнение тренда имеет вид:

Значение сезонной компоненты за III квартал и прогноз на II и III кварталы следующего года равны:

+—0,60; 4,55 и 3,78

—0,70; 6,72 и 4,55

—0,60; 3,78 и 4,55

—0,50; 4,55 и 6,72

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 2000 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -9
    +4
     
 
ИТОГО:        

Отдельные недостающие данные в таблице равны:

+—

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -11
    +5
     
 
Итого        

Отдельные недостающие данные в таблице равны:

+—

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -11
    +5
     
 
ИТОГО        

Отдельные недостающие данные в таблице равны:

+—

 

На основе квартальных данных объемов продаж 1995 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -11
    +5
     
 
ИТОГО        

Отдельные недостающие данные в таблице равны:

+—

 

На основе квартальных данных объемов продаж 1996 – 2000гг. была построена аддитивная модель временного ряда. Трендовая компонента имеет вид

Показатели за 1999 г. приведены в таблице:

Квартал Фактический объем продаж Компонента аддитивной модели
трендовая сезонная случайная
    -10
    +3
     
 
ИТОГО:        

Отдельные недостающие данные в таблице равны:

+—





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1067 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2514 - | 2362 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.015 с.