Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейный коэффициент детерминации. 6 страница




—Наибольшее влияние на результат оказывает фактор наименьшее -

—Наибольшее влияние на результат оказывает фактор наименьшее -

 

Уравнение регрессии в стандартизованном виде имеет вид:

Как влияют факторы на результат и каковы значения частных коэффициентов эластичности?

+—Наибольшее влияние на результат оказывает фактор , наименьшее

—Наибольшее влияние на результат оказывает фактор наименьшее - ;

—Наибольшее влияние на результат оказывает фактор наименьшее -

—Наибольшее влияние на результат оказывает фактор наименьшее -

 

По 20 наблюдениям получены следующие данные:

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

+—

 

По 16 наблюдениям получены следующие данные:

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

+—

 

Уравнения регрессии на и в стандартизованном и натуральном масштабе имеют вид:

+—

 

Уравнения регрессии y на и в стандартизированном и натуральном масштабе имеют вид:

+—

 

Уравнения регрессии на и в стандартизованном и натуральном масштабе имеют вид:

+—

 

. Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+—

 

. Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+—

 

. Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+—

 

 

.Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+—

 

При построении регрессионной зависимости некоторого результативного признака на 8 факторов по 25 измерениям коэффициент детерминации составил 0,736. После исключения 3 факторов коэффициент детерминации уменьшился до 0,584. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+—Да, только на уровнях 0,05 и 0,01

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровне 0,01

—Да, только на уровнях 0,1 и 0,05

 

При построении регрессионной зависимости некоторого результативного признака на 7 факторов по 32 измерениям коэффициент детерминации составил 0,812. После исключения 2 факторов коэффициент детерминации уменьшился до 0,76. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+—Да, только на уровнях 0,05 и 0,01

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровне 0,01

—Да, только на уровнях 0,1 и 0,05

 

При построении регрессионной зависимости некоторого результативного признака на 10 факторов по 45 измерениям коэффициент детерминации составил 0,617. После исключения 3 факторов коэффициент детерминации уменьшился до 0,512. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+—Да, только на уровне 0,01

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровнях 0,05 и 0,01

—Да, только на уровнях 0,1 и 0,05

 

При построении регрессионной зависимости некоторого результативного признака на 10 факторов по 45 измерениям коэффициент детерминации составил 0,347. После добавления 3 факторов коэффициент детерминации увеличился до 0,536. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровнях 0,1 и 0,05

—Да, только на уровне 0,1

—Да, только на уровнях 0,05 и 0,01

 

При построении регрессионной зависимости некоторого результативного признака на 7 факторов по 42 измерениям коэффициент детерминации составил 0,443. После добавления 3 факторов коэффициент детерминации увеличился до 0,527. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+—Нет, на всех уровнях значимости

—Да, на всех уровнях значимости

—Да, только на уровнях 0,1 и 0,05

—Да, только на уровне 0,1

—Да, только на уровнях 0,05 и 0,01

 

При построении регрессионной зависимости некоторого результативного признака на 8 факторов по 38 измерениям коэффициент детерминации составил 0,558. После добавления 2 факторов коэффициент детерминации увеличился до 0,644. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+—Да, только на уровнях 0,1 и 0,05

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровне 0,1

—Да, только на уровнях 0,05 и 0,01

 

По данным 150 наблюдений о доходе индивидуума Y, уровне его образования X1, и возрасте X2 определите, можно ли считать на уровне значимости 5 % линейную регрессионную модель Y на X1 и X2 гетероскедастичной, если суммы квадратов остатков после упорядочения данных по уровню образования следующие: RSS1 (для 50 значений с наименьшим уровнем образования) = 894,1; RSS2 (для 50 значений с наибольшим уровнем образования) = 3918,2:

+—гипотеза об отсутствии гетероскедастичности отвергается

—гипотеза об отсутствии гетероскедастичности принимается

—на основе имеющихся данных такую гипотезу нельзя проверить

 

Имеется следующая модель, построенная на основе 30 наблюдений:

Y = 1, 48+ 0, 788X R2 = 0,97

(3,29) (29,37)

В скобках указаны t – статистики

Для проверки гетероскедастичности, были построены отдельные модели по первым 12 и последним 12 наблюдениям. Остаточные суммы квадратов отклонений составили RSS1 = 1069 и RSS2 = 3344. Проверить гипотезу о гомоскедастичности с уровнем значимости 5%:

+—гипотеза о гомоскедастичности отвергается

—гипотеза о гомоскедастичности принимается

—для проверки данной гипотезы в данной задаче недостаточно данных

 

Имеется следующая модель, построенная на основе 30 наблюдений:

Y = 1, 75+ 1, 251X R2 = 0,97

(3,02) (2,37)

В скобках указаны t – статистики

Для проверки гетероскедастичности, были построены отдельные модели по первым 12 и последним 12 наблюдениям. Остаточные суммы квадратов отклонений составили RSS1 = 344 и RSS2 = 769. Проверить гипотезу о гомоскедастичности с уровнем значимости 5%:

—гипотеза о гомоскедастичности отвергается

+—гипотеза о гомоскедастичности принимается

—для проверки данной гипотезы в данной задаче недостаточно данных

 

Тема Модели временных рядов (Теоретические вопросы)

 

Уровень временного ряда может содержать:

—тенденцию, циклические, сезонные колебания, случайные колебания

—тенденцию и сезонные колебания

—сезонные и случайные колебания

+—любое сочетание тенденции, циклических, сезонных, случайных колебаний

 

Аддитивная модель временного ряда имеет вид:

+—

 

Автокорреляцией уравнений временного ряда называют:

+—автокорреляционную зависимость между последовательными уровнями временного ряда

—значение аналитической функции, характеризующей зависимость уровней ряда от времени

—значение перехода

 

Автокорреляционная функция временного ряда – это:

+—последовательность коэффициентов автокорреляции уровней временного ряда

—коррелограмма

—последовательность уровней временного ряда

 

Наиболее высокий коэффициента автокорреляции первого порядка свидетельствует о том, что:

+—исследуемый ряд содержит только тенденцию

—исследуемый ряд содержит циклические колебания

—ряд не содержит тенденции и циклических колебаний

 

Если ни один из коэффициентов автокорреляции не является значимым, это свидетельствует о том, что:

—исследуемый ряд содержит только тенденцию

—исследуемый ряд содержит циклические колебания

+—временный ряд не содержит тенденции и циклических колебаний

 

Кусочно – линейная модель регрессии применяется:

+—для моделирования тенденции временного ряда, испытывающего влияние структурных изменений

—для моделирования тенденции временного ряда за небольшой промежуток времени

—для моделирования тенденции временного ряда

 

Коинтеграция временных рядов:

+—причинно – следственная зависимость в уровнях двух (или более) временных рядов

—корреляционная зависимость между последовательными уровнями временного ряда

—последовательность коэффициентов автокорреляции уровней временного ряда

 

Авторегрессионные модели включают в качестве объясняющих переменных:

+—лаговые значения зависимых переменных

—лаговые значения независимых переменных

—лаговые значения зависимых и независимых переменных

 

Модели с распределенными лагами включают в качестве объясняющих переменных:

—лаговые значения зависимых переменных

+—лаговые значения независимых переменных

—лаговые значения зависимых и независимых переменных

 

Суть метода инструментальных переменных состоит в:

+—замене переменной модели на новую переменную, которая тесно коррелирует с прежней, но не коррелирует с остатками модели

—замене переменной модели на новую переменную, которая тесно коррелирует с остатками модели, но не коррелирует с прежней переменной

—в упрощении модели

 

Дополнительные вопросы

 

«Белым шумом» называется:

+ чисто случайный процесс;

- функциональный процесс;

- неслучайный процесс;

- регрессионный процесс

 

Проверка является ли временной ряд «белым шумом» осуществляется с помощью:

+ статистики Бокса-Пирса;

- величины лага;

- критерия Дарбина-Уотсона;

- коэффициента автокорреляции.

 

Значения коэффициента автокорреляции первого порядка равно 0,9. Следовательно …

- линейная связь между последующим и предыдущим уровнями не тесная;

+ линейная связь между последующим и предыдущим уровнями тесная;

- нелинейная связь между последующим и предыдущим уровнями тесная;

- линейная связь между временными рядами двух экономических показателей тесная.

 

Параметры уравнения тренда определяются ________методом наименьших квадратов

+ обычным;

- двухшаговым;

- обобщенным;

- косвенным.

 

Стационарность временного ряда означает отсутствие …

+ тренда;

- наблюдений по уровням временного ряда;

- значений уровней ряда;

- временной характеристики.

 

Модель временного ряда не предполагает …

- зависимость значений экономического показателя от времени;

+ независимость значений экономического показателя от времени;

- учет временных характеристик;

- последовательность моментов (периодов) времени, в течении которых рассматривается поведение экономического показателя.

 

Временной ряд называется стационарным, если он является реализацией _____________ процесса:

- функционального;

+ стационарного стохастического;

- нестационарного стохастического;

- неслучайного.

 

Временной ряд – это совокупность значений экономического показателя....

- за несколько непоследовательных моментов (периодов) времени;

- независящих от времени;

- по однотипным объектам;

+ за несколько последовательных моментов (периодов) времени.

 

Построена мультипликативная модель временного ряда, где - значение уровня ряда, - значение тренда, - значение сезонной компоненты, - значение случайной компоненты. Определите вариант правильного найденных значений компонент уровней ряда:

- ;

+ ;

- ;

- .

 

Временной ряд – это совокупность значений экономического показателя....

- за несколько непоследовательных моментов (периодов) времени;

- независящих от времени;

- по однотипным объектам;

+ за несколько последовательных моментов (периодов) времени.

 

Построена мультипликативная модель временного ряда, где - значение уровня ряда, - значение тренда, - значение сезонной компоненты, - значение случайной компоненты. Определите вариант правильного найденных значений компонент уровней ряда:

- ;

+ ;

- ;

- .

 

Временной ряд называется стационарным, если он является реализацией _____________ процесса:

- функционального;

+ стационарного стохастического;

- нестационарного стохастического;

- неслучайного.

 

Проверка является ли временной ряд «белым шумом» осуществляется с помощью:

+ статистики Бокса-Пирса;

- величины лага;

- критерия Дарбина-Уотсона;

- коэффициента автокорреляции.

 

В общем случае каждый уровень временного ряда формируется под воздействием …

- случайных временных воздействий;

- сезонных колебаний и случайных факторов;

+тенденции, сезонных колебаний и случайных факторов;

- тенденции и случайных факторов.

 

Под стационарным процессом можно понимать …

- процесс с возрастающей тенденцией;

- процесс с убывающей тенденцией;

+ стохастический процесс, для которого среднее и дисперсия независимо от рассматриваемого периода имеют постоянные значения;

- функциональный процесс.

 

Автокорреляционной функцией временного ряда называется:

- последовательность приращений коэффициентов автокорреляции уровней различных порядков;

- последовательность отношений коэффициентов автокорреляции к величинам соответствующих лагов;

- зависимость коэффициентов автокорреляции первого порядка от числа уровней временного ряда;

+ последовательность значений коэффициентов автокорреляции различных порядков.

 

Известны значения мультипликативной модели временного ряда: - значение уровня ряда, =5 - значение тренда, =3 - значение сезонной компоненты. Определите значение компоненты (случайной компоненты).

- = -1;

- =3;

+ =1;

- =0.

 

Мультипликативная модель содержит исследуемые факторы …

- в виде их отношений;

- в виде слагаемых;

+ в виде сомножителей;

- в виде комбинации слагаемых и сомножителей.

 

Уровень временного ряда может формироваться под воздействием тенденции, сезонных колебаний и …

- динамической составляющей;

- тренда;

- циклических колебаний;

+ случайных воздействий.

 

Циклические колебания связаны с …

- трендовыми взаимодействиями между экономическими показателями;

- общей динамикой конъюнктуры рынка;

- воздействием аномальных факторов;

+ сезонностью некоторых видов экономической деятельности (сельское хозяйство, туризм и.т.д.).





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 1176 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2456 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.