u=f(,).
Dx Dy , , (x0+Dx,y0+Dy)Î( 0(0,0)).
(x0,y0+Dy) (x0+Dx,y0)Î.
Df=f(x0+Dx,y0+Dy)-f(x0,y0) u=f(,) 0(0,0).
=f(x) 0 f¢(0), :
D=Df(0)=f¢(0)×D+a×D, a=a(D) a0 D0
u=f(,).
. u=f(,) f¢(,) f¢(,) 0(0,0) , :
Du=Df(x0,y0)=f¢(0,0)×Dx+f¢(0,0)×Dy+a×Dx+b×Dy (1)
a=a(Dx), b=b(Dy) a0 Dx0, b0 Dy0.
. u=f(,)
Df=(f(x0+Dx,y0+Dy)-f(x0,y0+Dy))+(f(x0,y0+Dy)-f(x0,y0)) (2)
f(x0,y0+Dy)-f(x0,y0) f(x0,y) 0 y0+Dy, .. u=f(,) 0(0,0). f(x0,y) , [y0,y0+Dy].
.. f¢(,) 0(0,0), f(x0,y) [y0,y0+Dy] ( (a;b): f(b)-f(a)= (c)(b-a))
,
f(x0,y0+Dy)-f(x0,y0)=f¢(0,0+q1D)×D (0<q1<1) (3)
f(x0+Dx,y0+Dy)-f(x0,y0+Dy) f(x,y0+Dy) 0 0+D, .. u=f(,) 0(0,0). f(x,y0+Dy) , [0,0+D].
.. f¢(,) 0(0,0), f¢(x,y0+D). , f(x,y0+D) [0,0+D] . ..
f(x0+Dx,y0+Dy)-f(x0,y0+Dy)=f¢(0+q2D,0+D)×D (0<q2<1) (4)
(3) (4), Df u=f(,) (x0,y0) :
Du=Df(x0,y0)=f¢(0+q2D,0+D)×D+f¢(0,0+q1D)×D (5)
f¢(,) f¢(,) 0(0,0),
f¢(0+q2D,0+D)×Df¢(0,0) D0
f¢(0,0+q1D)×Df¢(0,0) D0
:
f¢(0+q2D,0+D)=f¢(0,0)+a,
f¢(0,0+q1D)=f¢(0,0)+b,
a=a(Dx), b=b(Dy) a0 Dx0, b0 Dy0.
(5) :
Du=Df(x0,y0)=f¢(0,0)×Dx+f¢(0,0)×Dy+a×Dx+b×Dy (1) ...
|
|
(1) , r= - (x0,y0) (x0+Dx,y0+Dy).
a×Dx+b×Dy= . =e×r,
e D D e0 r0. (1) :
Du=f¢(0,0)×Dx+f¢(0,0)×Dy+e×r (6)
e0 r0.
(1) .,
u=f(x1,,xn) , 0(,, ).
f(x1,,xn) ,, (x1,,xn)Î.
,, 0(,, ).
Df f(x1,,xn) 0 :
Df= (,, )×D1+ (,, )×D2++ (,, )×Dn+a1Dx1+a2Dx2++anDxn
a1,a2,,an0 r0, r=
. u=f(x,y) 0(0,0), f(x,y) (0,0)
Df=×Dx+×Dy+a×Dx+b×Dy (7)
, a0 b0 r0.
1. u=f(,) () f¢(,) f¢(,) 0(0,0) , .
2. u=f(,) 0(0,0), (.. )
3. u=f(,) 0(0,0), f¢ f¢, f¢(0,0)=, f¢(0,0)=.
. , u=f(,) 0(0,0), , Df=×Dx+×Dy+a×Dx+b×Dy, a0 b0 r0.
D=0, Df=Df=×Dx+a×Dx Þ =A+aÞ =A.
, f¢(0,0) f¢(0,0)=.
, f¢(0,0) f¢(0,0)=. ...
4. u=f(,) 0(0,0) f¢(0,0) f¢(0,0), 0(0,0). , f¢(0,0) f¢(0,0) 0(0,0).
. f(,)=
f¢(0,0)=0 f¢(0,0)=0, (0,0) .
3- :
f(x1,,xn) 0(,, ), Df, , :
Df=1×D1+2×D2++An×Dn+a1Dx1+a2Dx2++anDxn, 1,2,,An , a1,a2,,an0 r0, r=
.
1. u=f(,) u¢x=f¢x(x,y) u¢=f¢(x,y). =j(t) y=y(t) (a,b) x¢t=j¢(t), y¢t=y¢(t). j(t) y(t) , " tÎ(a,b) (j(t),y(t))Î. u=f(j(t),y(t))=F(t), tÎ(a,b) " tÎ(a,b) u¢t,
|
|
(8)
( t , , .)
. t0Î(a,b). j(t0)=0 y(t0)=0 ( (0,0)Î), f(0,0)=u0. t0 Dt¹0 t0+DtÎ(a,b).
j(t0+Dt)=0+D, y(t0+Dt)=0+D, f(x0+Dx,y0+Dy)=u0+Du.
Du=f(x0+Dx,y0+Dy)-f(x0,y0) u=f(,) (0,0). Du (1)
Du=f¢(0,0)×Dx+f¢(0,0)×Dy+a×Dx+b×Dy, a,b0 r0.
=f¢(0,0)× +f¢(0,0)× +a× +b× (9)
, j(t) y(t) (a,b) j¢(t), y¢(t). (a,b), t0. D0 D0 Dt0 Û r0, Dt0. (9) Dt0,
=f¢(0,0)× +f¢(0,0)×
, t0 ,
=f¢(0,0)× +f¢(0,0)×
.. t0 , ...
(8) . .. , n:
(10)
2. u=f(x1,,xn) ÌRn = , = ,, = . x1=j1(t1,t2,,tm), x2=j2(t1,t2,,tm),,xn=jn(t1,t2,,tm) *ÌRm :
, ,, ; , ,, ;; , ,, ;
j1(t1,t2,,tm), j2(t1,t2,,tm),,jn(t1,t2,,tm) , "(t1,t2,,tm)Î*Þ, (j1(t1,t2,,tm), j2(t1,t2,,tm),,jn(t1,t2,,tm))Î.
u=f(j1(t1,t2,,tm), j2(t1,t2,,tm),,jn(t1,t2,,tm))=F(t1,t2,,tm) *.
"(t1,t2,,tm)Î* , ,, ,
= + ++ ,
= + ++ ,
= + ++ .
. j1(t1,t2,,tm), j2(t1,t2,,tm),,jn(t1,t2,,tm) t2,,tm. t2,,tm, 1 ( ), .. t1. , , = + ++ .
( (10), , , ,, , ,, .
(k=2,3,,m) j1(t1,t2,,tm), j2(t1,t2,,tm),,jn(t1,t2,,tm) , tk, tk. 1 ( ), , ,
= + ++ (k=2,3,,m) ...
.
u=f(,) , (0,0). u=f(,) . Dx Dy-, , (x0+Dx,y0+Dy)Î.
f¢(0,0)×Dx+f¢(0,0)×Dy (10)
u=f(,) (0,0) df(0,0) du(0,0).
df(0,0)=f¢(0,0)×Dx+f¢(0,0)×Dy (11)
df(0,0) 4- 0, 0,×Dx,×Dy.
.. Dx=dx,×Dy=dy, (11) :
df(0,0)=f¢(0,0)×dx+f¢(0,0)×dy
du= dx+ f¢ydy (12)
.. , .. du=dxu+dyu.
Du=f¢(0,0)×Dx+f¢(0,0)×Dy+a×Dx+b×Dy, a,b0 r0
|
|
Du=df(0,0)+a×Dx+b×Dy (13), a,b0 r0
(a×Dx+b×Dy)=(r) r0. (13) , u=f(,) (0,0) r0 , r= .
.
.
u=f(,) u¢x=f¢x(x,y) u¢=f¢(x,y). =j(t,h) y=y(t,h) th x¢t, x¢h, y¢t, y¢h. j(t,h) y(t,h) , "(t,h)Îth (j(t,h),y(t,h))Îxy. u=f(j(t,h),y(t,h))=F(t,h). F(t,h) (t,h)Îth
du=u¢xdx+u¢ydy (14)
.. (14) , , , .
. (.71-72).
. .
.
, : R, H, k.()
1) . V . .. R+k, H+k,
V=π(R+k)2(H+k)-πR2H
( - V=πR2H)
V=π(2Rk+R2k+Hk2+ 2Rk2+k2)
. f , f=πR2H.