Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вопрос 36. Параллельные RL и RC цепи при гармоническом воздействии. Закон Ома. Векторные диаграммы токов. Проводимости. Входное сопротивление цепи в комплексной форме




Параллельные цепи RL и RC при гармоническом воздействии

Для параллельных цепей начинаем строить векторную диаграмму с вектора напряжений.

отстаёт от напряжения на угол , т. к. цепь RL.

опережает напряжение на угол , т. к. цепь .

Общий ток равен векторной сумме этих токов:

Чтобы найти общий ток, существует специальный метод расчёта — метод составляющих токов.

Разложим ток на две составляющие:

— активная составляющая, совпадает по фазе с напряжением;

— индуктивная составляющая, отстаёт от напряжения на угол 90°.

Разложим ток на составляющие:

— активная составляющая, совпадает по фазе с напряжением;

— емкостная составляющая, опережает напряжение на угол 90°.

Из треугольника ABC:

 

Проводимости при гармоническом воздействии

Отношение активной составляющей тока к напряжению, называется активной проводимостью:

Отношение индуктивной (емкостной) составляющей тока к напряжению, называется реактивной проводимостью:

Отношение тока ветви (общего тока) к напряжению называется полной проводимостью:

 

Разделим все стороны диаграммы токов на напряжение, получим диаграмму проводимостей:

 

Если параллельно соединяется по одному элементу, то формулы проводимостей упрощаются. Проводимость будет обратно пропорциональна сопротивлению:

 

Чтобы записать входное сопротивление цепи в комплексной (символической) форме, используют обычную формулу сопротивления при параллельном соединении, только вместо сопротивлений подставляют их комплексные выражения:

В числитель подставляем в показательной форме, в знаменатель — в алгебраической.


Вопрос 37. Представление напряжения и тока в комплексной форме. Отрицательные углы. Законы Ома и Кирхгофа в комплексной форме. Выражение мощности в комплексной форме. Цепь с произвольным числом резистивных и реактивных элементов. Построение векторной диаграммы.

Выражение тока и напряжения в комплексной (символической) форме

 

 

 

 

Рассмотрим перевод комплексных чисел из алгебраической формы в показательную.

Дано:

Определить:

Если мнимая часть отрицательна, то угол также отрицателен.

 

Рассмотрим перевод обратно:

Дано:

Определить:

Если угол отрицателен, то мнимая часть будет отрицательной.

 

Примеры:

 

Выражают ток и напряжение в показательной форме. Модуль равен максимальному или действующему значению, аргумент равен начальной фазе:

 

Например:

 





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 1851 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.