Метод узловых напряжений. Основан на применении первого закона Кирхгофа и закона Ома для участков цепи. Сущность метода сводится к определению узловых напряжений относительно некоторого базисного узла. Если принять потенциал базисного узла равным нулю, то напряжения между остальными узлами и базисным узлом будут равны потенциалам этих узлов. Поэтому данный метод называется также в цепях постоянного тока методом узловых потенциалов. Зная узловые напряжения ветвей, по закону Ома легко определить токи ветвей.
Рис. 2.1
Пример. Электрическая схема представлена на рис.2.1. Узел 4 принимаемза базисный, неизвестные узловые напряжения: Напряжения определим через напряжения напряжение На основании метода узловых напряжений составляем систему уравнений(2.1)
(2.1)
где – собственная узловая проводимость первого узла;
– собственная узловая проводимость второго узла;
– собственная узловая проводимость третьего узла;
– проводимость ветвей, соединяющих первый и второй узлы;
– проводимость ветвей, соединяющих первый и третий узлы;
– проводимость ветвей, соединяющих второй и третий узлы;
–узловой ток первого узла;
–узловой ток второго узла;
–узловой ток третьего узла.
Решая систему уравнений (2.1), определяем узловые напряжения по ним– напряжения По напряжениям ветвей находим токи ветвей на основании законаОма, например, ток в ветви с
Метод двух узлов. Часто встречаются схемы (рис.2.2), содержащие всего два узла. При применении метода узловых напряжений для расчета таких схем система уравнений сводится к одному уравнению вида:
(узел 2 является базисным), где – собственная проводимость узла 1; – узловой ток узла 1. Узловое напряжение определяется по выражению
После того как определено узловое напряжение , ток в любой ветви находится на основе обобщенного закона Ома. Например, ток в ветви 1:
Рис. 2.2
Метод эквивалентного генератора напряжения. Позволяет определить ток в любой ветви сложной цепи,не определяя истинных токов в других ветвях. Данный метод используют в практике расчета токов, мощностей и т.п., особенно в специальных курсах при расчетах усилительных импульсных устройств и др.
Ток, согласно методу эквивалентного генератора напряжения, определяетсяпоформуле
(2.2)
где – сопротивление ветви, в которой рассчитывается ток ;
– напряжение эквивалентного генератора, определяемое как напряжение в исследуемой ветви при ее обрыве– напряжение холостого хода; – внутреннее сопротивление генератора.
можно определить:
а) экспериментально, используя зависимость (2.2), если закоротить ( опыт короткого замыкания);
б) аналитически, расчетным путем, исключив из схемы все ЭДС, но оставив их внутренние сопротивления, преобразовав всю схему к одному сопротивлению относительно точек разрыва.
Общая методика расчета цепи по методу эквивалентного генератора следующая:
1. Размыкается ветвь, в которой необходимо определить ток.
2. Опытным или расчетным путем определяется напряжение между точками разрыва –
3. Все источники из схемы выключаются и заменяются их внутренними сопротивлениями. Относительно точек разрыва определяется опытным или расчетным путем эквивалентное сопротивление схемы, которое является внутренним сопротивлением эквивалентного генератора –
Потенциальная диаграмма. Потенциальной диаграммой называют графическое изображение распределения потенциала в электрической цепи в зависимости от сопротивлений участков цепи иэлектродвижущих сил источников энергии. Второй закон Кирхгофа удобно иллюстрирован построением потенциальной диаграммы.
Построим потенциальную диаграмму для контура 2-4-5-6-1-3-2 – (рис.2.3), учитывая что ток течет от точки большего потенциала к точке с меньшим потенциалом.
Параметры схемы: токи ЭДС Заземляется точка 2, переход через ЭДС ,
Диаграмма построена на рис.2.3.
Рис.2.3
Домашнее задание
1. Изучить методы расчета электрических цепей: метод узловыхнапряжений,метод двух узлов, метод эквивалентного генератора напряжения. Ознакомиться с объемом и содержанием лабораторного задания.
2. Рассчитать токи в схеме (рис 2.4) по данным табл.2.1 согласно варианту:
а)методом узловых напряжений. По рассчитанным узловым напряжениям определить токи в ветвях; данные занести в табл. 2.2;
б)методом эквивалентного генератора напряжения. Определить ток в сопротивлении нагрузки. При расчете напряжения холостого хода расчет токов произвести методом двух узлов. Все данные расчетов занести в табл. 2.2.
Рис.2.4
Таблица 2.1
1. № вар. | 2. Е2, 3. В | 4. Е4, 5. В | 6. R1, кОм | 7. R2, кОм | 8. R3, кОм | 9. R4, кОм | 10. R5, кОм | 11. R6, кОм | 12. Баз. узел | 13. Нагруз-ка | 14. Контур потен- 15. циальной диаграммы |
16. 1 | 17. 52 | 18. 27 | 19. 4,1 | 20. 3,7 | 21. 3,8 | 22. 2,8 | 23. 7,2 | 24. 4,7 | 25. 2 | 26. | 27. 4–5–1–2–3–6–4 |
28. 2 | 29. 52 | 30. 27 | 31. 4,2 | 32. 4,5 | 33. 4,0 | 34. 2,6 | 35. 7,0 | 36. 5,2 | 37. 1 | 38. | 39. 1–2–4–6–3–1 |
40. 3 | 41. 12 | 42. 52 | 43. 4,3 | 44. 4,3 | 45. 3,8 | 46. 2,5 | 47. 7,5 | 48. 5,1 | 49. 3 | 50. | 51. 3–6–4–2–1–3 |
52. 4 | 53. 52 | 54. 12 | 55. 4,0 | 56. 3,2 | 57. 7,2 | 58. 4,1 | 59. 7,2 | 60. 5,5 | 61. 3 | 62. | 63. 2–1–5–4–6–3–2 |
64. 5 | 65. 12 | 66. 53 | 67. 4,1 | 68. 3,3 | 69. 3,2 | 70. 2,7 | 71. 7,5 | 72. 3,7 | 73. 2 | 74. | 75. 3–1–5–4–2–3 |
76. 6 | 77. 12 | 78. 53 | 79. 4,4 | 80. 3,3 | 81. 7,9 | 82. 3,3 | 83. 7,5 | 84. 1,5 | 85. 1 | 86. | 87. 1–5–4–2–3–1 |
Таблица 2.2
88. Данные | 89. | 90. | 91. Метод узловых напряжений | 92. Метод двух узлов | |||||||||||
93. | 94. | 95. Узловые 96. напряжения | 97. Токи ветвей | 98. Узловое напряжение | 99. Токи ветвей | ||||||||||
100. | 101. | 102. | 103. | 104. | 105. | 106. | 107. | 108. | |||||||
109. 1 | 110. 2 | 111. 3 | 112. 4 | 113. 5 | 114. 6 | 115. 7 | 116. 8 | 117. 9 | 118. 10 | 119. 11 | 120. 12 | 121. 13 | 122. 14 | 123. 15 | 124. 16 |
125. Расчетные | 126. | 127. | 128. | 129. | 130. | 131. | 132. | 133. | 134. | 135. | 136. | 137. | 138. | 139. | 140. |
141. Эксперемен-тальные | 142. | 143. | 144. | 145. | 146. | 147. | 148. | 149. | 150. | 151. | 152. | 153. | 154. | 155. | 156. |
157. Метод эквивалентного 158. генератора | 159. Опытные данные для построения потенциальной диаграммы –напряжения участков цепи | ||||||||
160. | 161. | 162. | 163. | 164. | 165. | 166. | 167. | 168. | 169. |
170. 17 | 171. 18 | 172. 19 | 173. 20 | 174. 21 | 175. 22 | 176. 23 | 177. 24 | 178. 25 | 179. 26 |
180. | 181. | 182. | 183. | 184. | 185. | 186. | 187. | 188. | 189. |
190. | 191. | 192. | 193. | 194. | 195. | 196. | 197. | 198. | 199. |
Описание лабораторной установки
Экспериментальная установка состоитиз лабораторного макета, двух источников постоянной ЭДС на щитке питания.
На верхней гетинаксовой панели макета изображена схема элементов цепи (см. рис. 2.4), смонтированных внутри макета. На панель выведены зажимы для подключения источников питания, зажимы узлов 1, 2, 3, 4 для измерения узловых напряжений, зажимы и тумблеры в ветвях с сопротивлениями позволяющие измерить токи в этих ветвях; приборы – вольтметр и миллиамперметр.