Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Витамин Е. Источники, биохимические функции. Признаки недостаточности у человека. Использование препаратов витамина Е в медицинской практике




Билет 1

1. Биосинтез гема. Основные этапы. Значение процесса. Возможные нарушения: порфирии и железодефицитные состояния.

Гем синтезируется во всех тканях, но с наибольшей скоростью в костном мозге и печени. В костном мозге гем необходим для синтеза гемоглобина в ретикулоцитах, в гепатоцитах – для образования цитохрома Р­450.

Первая рекция синтеза гема – образование 5-аминолевулиновой кислоты и глицина и сукцинил-КоА идёт в матриксе митохондрий, где в ЦТК образуется один из субрстратов этой реакции – сукцинил-КоА. Эту реакцию катализирует пиридоксальзависимый фермент аминолевулинатсинтаза.

Из митохондрий 5-аминолевулиновая кислота поступает в цитоплазму. В цитоплазме проходят промежуточные этапы синтеза гема: соединение 2 молекул 5-аминолевулиновой кислоты в молекулу порфобилиногена, дезаминирование порфобилиногена с образованием гидроксиметилбилана, ферментативное превращение гидроксиметилбилана в молекулу уропорфобилиногена III, декарбоксилирование последнего с образование копропорфибриногена III. Гидроксиметилбилан может также неферментативно превращаться в уропорфириноген I, который декарбоксилируется в копропорфириноген I. Из цитоплазмы копропорфириноген III опять поступает в митохондрии, где проходят заключительные реакции синтеза гема. В результате двух последовательных окислительных реакций копропорфириноген III превращается в пропорфириноген IX, а протопорфириноген IX – в протопорфирин IX. Фермент феррохелатаза, присоединяя к проопорфирину IX двухвалентное железо, превращает его в гем. Источником железа для синтеза гема служит депонирующий железо белок ферритин. Синтезированный гем, соединяясь с а- и β-полипептидными цепями глобина, образует гемоглобин. Гем регулирует синтез глобина: при снижении скорости синтеза гема синтез глобина в ретикулоцитах тормозится.

Порфирии являются наследственными или приобретёнными нарушениями синтеза гема. Они сопровождаются повышением содержания порфириногенов, а также продуктов их окисления в тканях и крови и появлением их в моче. Наследственные порфирии обусловлены генетическими эффектами ферментов, участвующих в синтезе гема, за исключением аминолевулинатсинтазы. При этих заболеваниях отмечают снижение образования гема. Поскольку гем – аллостерический ингибитор аминолевулинатсинтазы, то его активность повышается, и это приводит к накоплению промежуточных продуктов синтеза гема – аминолевулиновой кислоты и порфириногенов.

Эритропоэтические порфирии сопровождаются накоплением порфиринов в нормобластах и эритроцитах, а печёночные – в гепатоцитах.

Железодефицитные состояния:

Железодефицитные состояния проявляются в недостатке железа для нужд организма. Этот недостаток может следствием недостаточного поступления железа с пищей, может являться последствием инфекционного заболевания или же носить чисто физиологический характер: при менструациях у девушек, при беременности или в периоды усиленного роста организма.

Витамин Е. Источники, биохимические функции. Признаки недостаточности у человека. Использование препаратов витамина Е в медицинской практике.

Витамин Е (токоферол).

Функции: витамин, встраиваясь в фосфолипидный бислой мембран, выполняет антиоксидантную функцию, т.е. препятствует развитию ПОЛ. Также он:

1. Лимитирует свободнорадикальные реакции в быстроделящихся клетках – (слизистые оболочки, эпителий…). Этот эффект лежит в основе положительного действия витамина в регуляции репродуктивной функции у мужчин и у женщин.

2. Защищает витамин А от окисления, что способствует проявлению ростстимулирующей активности витамина А.

3. Защищает жирнокислотные остатки мембранных фосфолипидов и, следовательно, любые клеточные мембраны от ПОЛ.

Источники: растительные масла (кроме оливкового), пророщённое зерно пшеницы, бобовые, яйца.

Гиповитаминоз:

Причины гиповитаминоза: алиментарная недостаточносрть, наушение всасывания жиров, недостаток аскорбиновой кислоты (она защищает токоферол от окисления).

Проявления гиповитаминоза: пониженная устойчивость и гемолиз эритроцитов in vivo, анемия, увеличение проницаемости мембран, мышечная дистрофия, слабость. Также отмечены арефлексия, снижение проприоцептивной и вибрационной чувствительности, парез взора вследствие поражения задних канатиков спинного мозга и миелиновой оболочки нервов.

В эксперименте у животных при авитаминозе развивается атрофия семенников, рассасывание плода, размягчение мозга, некроз печени, жировая инфильтрация печени.

В медицинской практике витамин Е применяется в форме а-токоферол ацетата.

 

3. При каких заболеваниях может одновременно развиться и жировая инфильтрация печени и кетоз? Каков механизм развития этих нарушений?

Предположительный диагноз – сахарный диабет.

Развитие жировой инфильтрации печени и последующего кетоза происходит при сахарном диабете не только вследствие дефицита инсулина в организме, но и в результате нарушения или выпадения (при удалении поджелудочной железы) продукции липокаина. Ожирение печени наступает лишь в том случае, если при дефиците инсулина одновременно усиливается поступление жира в печень из жировых депо в виде НЭЖК и триглицеридов и нарушаются окисление и выход жира из печени. Развитию жировой инфильтрации печени способствуют: обеднение печени гликогеном; недостаточность липотропных пищевых факторов и липокаина; избыточная продукция СТГ; жировая диета, анемия, инфекция, интоксикация. Одним из тяжелых нарушений липид-ного обмена при сахарном диабете является кетоз, связанный с жировой инфильтрацией печени.

К кетозу, как и к жировой инфильтрации печени, приводят обеднение печени гликогеном, дефицит липокаина и липотропных пищевых факторов, избыточная продукция СТГ, жировая диета, анемии, интоксикации, голодание. Непосредственными причинами кетоза являются усиление распада НЭЖК в печени; нарушение ресинтеза а-кетоуксусной кислоты в высшие жирные кислоты; недостаточное окисление образовавшейся при распаде высших жирных кислот ацетоуксусной кислоты в цикле трикарбоновых кислот (цикл Кребса). Главную роль в развитии кетоза играет повышенное образование ацетоуксусной кислоты в печени.

Билет 2

1. Взаимосвязь обменов белков, жиров и углеводов. Основные этапы катаболизма. Ключевые соединения трёх видов обмена и пути их использования.

В настоящее время экспериментально обосновано существование четырех главных этапов распада молекул углеводов, белков и жиров, которые интегрируют образование энергии из основных пищевых источников. На I этапе полисахариды расщепляются до моносахаридов (обычно гексоз); жиры распадаются на глицерин и высшие жирные кислоты, а белки – на составляющие их свободные аминокислоты. Следует подчеркнуть, что указанные процессы в основном являются гидролитическими, поэтому освобождающаяся в небольшом количестве энергия почти целиком используется организмами в качестве тепла.

На II этапе мономерные молекулы (гексозы, глицерин, жирные кислоты и аминокислоты) подвергаются дальнейшему распаду, в процессе которого образуются богатые энергией фосфатные соединения и ацетил-КоА. В частности, при гликолизе гексозы расщепляются до пировиноград-ной кислоты и далее до ацетил-КоА. Этот процесс сопровождается образованием ограниченного числа богатых энергией фосфатных связей путем субстратного фосфорилирования. На этом этапе высшие жирные кислоты аналогично распадаются до ацетил-КоА, в то время как глицерин окисляется по гликолитическому пути до пировиноградной кислоты и далее до ацетил-КоА. Для аминокислот ситуация на II этапе несколько отлична. При преимущественном использовании аминокислот в качестве источника энергии (при дефиците углеводов или при сахарном диабете) некоторые из них непосредственно превращаются в метаболиты лимоннокислого цикла (глутамат, аспартат), другие – опосредованно через глутамат (пролин, гистидин, аргинин), третьи – в пируват и далее в ацетил-КоА (аланин, серин, глицин, цистеин). Наконец, ряд аминокислот, в частности лейцин, изо-лейцин, расщепляется до ацетил-КоА, а из фенилаланина и тирозина, помимо ацетил-КоА, образуется оксалоацетат через фумаровую кислоту. Как видно, II этап можно назвать этапом образования ацетил-КоА, являющегося по существу единым (общим) промежуточным продуктом катаболизма основных пищевых веществ в клетках.

На III этапе ацетил-КоА (и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат) подвергаются окислению («сгоранию») в цикле ди- и трикарбоновых кислот Кребса. Окислениесопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2.

На IV этапе осуществляется перенос электронов от восстановленных нуклеотидов на кислород (черездыхательную цепь). Он сопровождается образованием конечного продукта – молекулы воды. Этот транспорт электронов сопряжен с синтезом АТФ в процессе окислительного фосфорилирования





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 689 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2312 - | 2017 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.