Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Функции фосфора в организме следующие




1. Участвует в процессах окостенения.

2. Входит в состав макроэргов.

3. Входит в состав нуклеиновых кислот.

4. Входит в состав некоторых коферментов.

5. Входит в состав фосфолипидов.

6. Эфиры фосфора являются промежуточными продуктами энергетического метаболизма.

7. Входит в состав буферных систем крови.

8. Входит в состав фосфопротеинов (казеиноген молока).

Самостоятельной пищевой недостаточности фосфора в организме обычно не бывает. Чаще нарушения обмена фосфора связаны с недостаточностью кальция в организме.

Регуляция обмена кальция и фосфора.

Трансмембранный перенос кальция регулируется Са,Mg-АТФазой. Осуществляется за счет двух гормонов, а также витамина D. В гормональной регуляции кальция принимают участие паратгормон и кальцитонин.

Парат-гормон.

Это гормон паращитовидных желез.

1. Подавляет активность ключевого фермента ЦТК изоцитратдегидрогеназы в остеокластах. Это приводит к накоплению изоцитрата в костной ткани. Изоцитрат образует комплексы с кальцием, и образование таких комплексов способствует выведению кальция из костей. Это приводит к уменьшению кальций-связывающей способности костей и декальцинации костей.

2. Парат-гормон понижает реабсорбцию фосфора в почечных канальцах.

Поэтому следствием действия парат-гормона является фосфатурия и повышение уровня кальция в плазме крови - гиперкальциемия. Подробнее о паратгормоне - в лекции "Костная ткань".

Кальцитонин. Основная роль - предотвращение гиперкальциемии. Он тормозит выход Са и Р из костной ткани (декальцинацию костей). Подробнее о кальцитонине - в лекции по теме "Костная ткань".

Резюме: таким образом, по конечным эффектам действие парат-гормона и кальцитонина противоположно, но точки приложения этого действия разные. Поэтому эти гормоны не являются антагонистами.

Витамин D.

Его активная форма - диокси-витаминD3 активирует биосинтез особого белка в кишечнике, который необходим для всасывания кальция.

Поэтому под действием витамина D:

1. улучшается всасывание кальция;

2. способствует синтезу в костной ткани специального белка, который улучшает проникновение кальция в костную ткань.

Таким образом улучшается минерализация костей. Поэтому при лечении остеопороза применяют витамин D вместе с кальцитонином.

Основные пищевые источники Са и Р: молоко, сыр, творог, рыба.

Источники витамина D: печень, рыбий жир.

Данные изменения связаны с тем, что из-за недостатка глюкозо-6-фосфатдегидрогеназы снизилась активность пентозо-фосфатного цикла. Это привело к снижению количества НАДФН2 (который является продуктом ПФЦ). Снижение количества НАДФН2 привело к снижению уровня глутатиона восстановленного, который является антиоксидантом. Снижение количества глутатиона привело к активации ПОЛ, что привело к гемолизу эритроцитов. Гемоглобин снижен, потому что эритроциты погибли. Гаптоглобин снижен, потому что связался с гемоглобином.

Билет 10

Под термином «кетоновые (ацетоновые) тела» подразумевают ацетоук-сусную кислоту (ацетоацетат) СН3СОСН2СООН, β-оксимасляную кислоту (β-оксибутират, или D-3-гидроксибутират) СН3СНОНСН2СООН иацетон СН3СОСН3.

В здоровом организме ацетон в крови присутствует в крайне низких концентрациях, образуется в результате спонтанного декарбоксилирования ацетоацетата и, по-видимому, не имеет определенного физиологического значения.

Кетоновые тела образуются в печени. Прежние представления о том, что кетоновые тела являются промежуточными продуктами β-окисления жирных кислот, оказались ошибочными.

Во-первых, в обычных условиях промежуточными продуктами β-окис-ления жирных кислот являются КоА-эфиры этих кислот, например β-окси-бутирил-КоА, ацетоацетил-КоА.

Во-вторых, β-оксибутирил-КоА, образующийся в печени при β-окисле-нии жирных кислот, имеет L-конфигурацию, в то время как β-оксибутират, обнаруживаемый в крови, представляет собой D-изомер. Именно β-окси-бутират D-конфигурации образуется в ходе метаболического пути синтеза β-окси-β-метилглутарил-КоА (3-гидрокси-3-метилглутарил-КоА):

 

На первом этапе из 2 молекул ацетил-КоА образуется ацетоацетил-КоА. Реакция катализируетсяферментом ацетил-КоА-ацетилтрансферазой (3-ке-тотиолазой). Затем ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА.Реакция протекает под влиянием фермента гидро-ксиметилглутарил-КоА-синтетазы. Образовавшийся β-окси-β-метилглута-рил-КоА способен под действием гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоацетат и ацетил-КоА.

Ацетоацетат восстанавливается при участии НАД-зависимой D-3-гид-роксибутиратдегидрогеназы, при этом образуется D-β-оксимасляная кислота(D-3-гидроксибутират). Следует подчеркнуть, что фермент специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры.

Существует второй путь синтеза кетоновых тел. Образовавшийся путем конденсации 2 молекул ацетил-КоА ацетоацетил-КоА способен отщеплятькоэнзим А и превращаться в ацетоацетат. Этот процесс катализируется ферментом ацетоацетил-КоА-гидролазой (деацилазой):

 

Однако второй путь образования ацетоуксусной кислоты (ацетоацетата) не имеет существенного значения, так как активность деацилазы в печенинизкая.

В настоящее время ясна молекулярная основа изречения, что «жиры сгорают в пламени углеводов». Известно, что ацетил-КоА, образовавшийся приокислении жирных кислот, включается в цикл трикарбоновых кислот в условиях, когда расщепление жиров и углеводов соответствующим образом сбалансировано. Включение ацетил-КоА в цикл Кребса зависит от доступности оксалоацетата для образования цитрата. Однако если расщеплениежиров преобладает, судьба ацетил-КоА изменяется. Объясняется это тем, что в отсутствие углеводов или при нарушении их использованияконцентрация оксалоацетата снижается. При голодании или диабете окса-лоацетат расходуется на образование глюкозы и поэтому не может конденсироваться с ацетил-КоА. В таких условиях путь метаболизма аце-тил-КоА отклоняется в сторону образования ацетоацетата и D-3-гидрокси-бутирата, т.е. кетоновых тел.

В крови здорового человека кетоновые тела содержатся лишь в очень небольших концентрациях (в сыворотке крови 0,03–0,2 ммоль/л). При патологических состояниях (у лиц с тяжелой формой сахарного диабета, при голодании, а также у животных с экспериментальным острым стрептозотоциновым или аллоксановым диабетом) концентрация кетоновых тел в сыворотке крови увеличивается и может достигать 16–20 ммоль/л.

Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Как отмечалось, основным местом образования ацетоацетата и 3-гид-роксибутирата служит печень. Из митохондрий печени эти соединения диффундируют в кровь и переносятся к периферическим тканям.

Действительно, сердечная мышца и корковый слой почек предпочтительно используют в качестве «топлива» ацетоацетат, а не глюкозу.

В противоположность этому глюкоза является главным «топливом» для мозга у лиц, получающих сбалансированную пищу. При голодании и диабете мозг адаптируется к использованию ацетоацетата. Установлено, что в условиях длительного голодания 75% потребности мозга в «топливе» удовлетворяется за счет ацетоацетата.

Известно, что в периферических тканях 3-гидроксибутират (β-оксимас-ляная кислота) способен окисляться до ацетоацетата, а последний активируется с образованием соответствующего КоА-эфира (ацетоацетил-КоА). Ацетоацетат может быть активирован путем переноса КоА с сукцинил-КоА в реакции, катализируемой специфической КоА-трансферазой. Образовавшийся ацетоацетил-КоА далее расщепляется тиолазой с образованием 2 молекул ацетил-КоА, которые затем включаются в цикл Кребса:

 

Не исключено, что существует и второй путь активации ацетоацетата – это использование АТФ и HS-KoA аналогично тому, как при активациижирных кислот:





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 500 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2530 - | 2230 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.