В этой статье дадим основные понятия, на которых будет базироваться вся дальнейшая теория по теме производная функции одной переменной.
Путь x – аргумент функции f(x) и - малое число, отличное от нуля.
(читается «дельта икс») называют приращением аргумента функции. На рисунке красной линией показано изменение аргумента от значения x до значения (отсюда видна суть названия «приращение» аргумента).
При переходе от значения аргумента к значения функции изменяются соответственно от до при условии монотонности функции на отрезке . Разность называют приращением функции f(x), соответствующем данному приращению аргумента. На рисунке приращение функции показано синей линией.
Рассмотрим эти понятия на конкретном примере.
Возьмем, к примеру, функцию . Зафиксируем точку и приращение аргумента . В этом случае приращение функции при переходе от к будет равно
Отрицательное приращение говорит об убывании функции на отрезке .
Графическая иллюстрация
Определение производной функции в точке.
Пусть функция f(x) определена на промежутке (a; b), и - точки этого промежутка. Производной функции f(x) в точке называется предел отношения приращения функции к приращению аргумента при . Обозначается .
Когда последний предел принимает конкретное конечное значение, то говорят о существовании конечной производной в точке. Если предел бесконечен, то говорят, что производная бесконечна в данной точке. Если же предел не существует, то и производная функции в этой точке не существует.
Функцию f(x) называют дифференцируемой в точке , когда она имеет в ней конечную производную.
Если функция f(x) дифференцируема в каждой точке некоторого промежутка (a; b), то функцию называют дифференцируемой на этом промежутке. Таким образом, любой точке x из промежутка (a; b) можно поставить в соответствие значение производной функции в этой точке , то есть, мы имеем возможность определить новую функцию , которую называют производной функции f(x) на интервале (a; b).
Операция нахождения производной называется дифференцированием.
Проведем разграничения в природе понятий производной функции в точке и на промежутке: производная функции в точке – это есть число, а производная функции на промежутке – это есть функция.
Давайте разберем это на примерах для ясности картины. При дифференцировании будем пользоваться определением производной, то есть переходить к нахождению пределов. При возникновении трудностей рекомендуем обращаться к разделу теории пределы, основные определения, примеры нахождения, задачи и подробные решения.
Производная. Рассмотрим некоторую функцию y = f (x) в двух точках x 0 и x 0 + : f (x 0) и f (x 0 + ). Здесь через обозначено некотороемалое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции: f (x 0 + ) - f (x 0)называется приращением функции. Производной функции y = f (x) в точке x 0называется предел:
Если этот предел существует, то функция f (x) называется дифференцируемой в точке x 0 . Производная функции f (x) обозначается так:
Геометрический смысл производной. Рассмотрим график функции y = f (x):
Из рис.1 видно, что для любых двух точек A и B графика функции:
где - угол наклона секущей AB.
Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точкуB, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.
Уравнение касательной. Выведем уравнение касательной к графику функции в точке A (x 0, f (x 0)). В общем случае уравнение прямой с угловым коэффициентом f ’(x 0) имеет вид:
y = f ’(x 0) · x + b.
Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:
f (x 0) = f ’(x 0) · x 0 + b,
отсюда, b = f (x 0) – f ’(x 0) · x 0, и подставляя это выражение вместо b, мы получим уравнение касательной:
y = f (x 0) + f ’(x 0) · (x – x 0).
Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки – известная функция x (t) времени t. В течение интервала времени от t 0 до t 0 + точка перемещается на расстояние: x (t 0 + ) - x (t 0) = , а её средняя скорость равна: va = / . При 0 значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью v (t 0) материальной точки в момент времени t 0. Но по определению производной мы имеем:
отсюда, v (t 0) = x’ (t 0), т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ (t).