Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Простые и сложные проценты в финансовых операциях




Известны две основные схемы дискретного начисления процентов за фиксированные в договоре интервалы времени: схема простых процентов (simple interest) и схема сложных процентов (compound interest).

Простые проценты представляют собой величину прирастания определенной суммы Р, увеличивающейся за определенный срок (единичный промежуток начисления Т=1) на некоторый процент (по ставке r, представленной в виде дроби) от начальной суммы P, т.е. на rP. Последовательность наращенных сумм P, F1, F2, …, Fn за n промежутков начисления представляет собой арифметическую прогрессию с начальным членом P и разностью rP. Таким образом, к концу n-го промежутка начисления наращенная сумма рассчитывается по формуле: F=P +Pr +Pr+…+Pr=P +Prn, и следовательно,

Fn= P(1+nr) (1).

(1+nr) – называют множителем наращения. Если ставка r измеряется в процентах, то для ее представления в виде дроби следует r поделить на 100.

Наращение по простым процентам применяется при обслуживании сберегательных вкладов с ежемесячной выплатой процентов и вообще в тех случаях, когда проценты не присоединяются к сумме долга, а периодически выплачиваются кредитору. Простые проценты применяют при выдаче краткосрочных ссуд (срок до одного года с однократным начислением процентов).

Сложные проценты представляют собой величину прирастания определенной суммы, увеличивающейся за определенный срок (единичный промежуток начисления) на некоторый процент с учетом получения процентов на проценты. Таким образом, каждая следующая сумма при наращении сложных процентов по ставке r возрастает на долю r от предыдущей и рассчитывается по формуле:

Fn=P(1+ r)n. (2)

Последовательность наращенных сумм P, F1, F2, …, Fn за n промежутков начисления представляет собой геометрическую прогрессию с начальным членом P и знаменателем прогрессии (1+r).

Процентные деньги (проценты) – это величина дохода,
равная Дn=Fn-P (3), т.е. разности между наращенной суммой и начальной.

Норма процента рассчитывается по формуле (4):

 
 

Правило 72. Если процентная ставка есть a, то удвоение капитала по такой ставке происходит примерно за 72/a лет. Это правило применяется для небольших ставок, вычисляемых по сложным процентам.

При выводе формул 1, 2 предполагалось, что n измеряется в годах, а r является годовой процентной ставкой. Эту формулы можно применить и при других периодах начисления. Необходимо только следить за соответствием длины периода и процентной ставки (размерность каждого периода nk должна быть согласована с размерностью процентной ставки rk.

В том случае, когда сложные проценты начисляются m-раз в году, а наращение капитала происходит за n лет, где n – целое число, формула нахождения наращенной суммы примет следующий вид:

(5).

Можно сделать некоторые выводы для сложных процентов:

Ø Проценты, полученные за год по ставке r не эквивалентны процентам, полученным за год по ставке r/12 в месяц;

Ø чем чаще идет начисление по схеме сложных процентов, тем больше итоговая накопленная сумма.

Для облегчения расчетов составлены таблицы мультиплицирующих множителей, которые показывают, во сколько раз возрастет за n лет сумма, положенная в банк под r процентов годовых: FM(n,r)=(1+r)n. Величина FM(n,r) есть будущая стоимость одной денежной единицы (один рубль, один доллар, одна иена и т.п.)– через n лет при ставке процента r.

Достаточно обыденными являются финансовые контракты, заключаемые на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться с помощью следующих методов:

Ø По схеме сложных процентов

Ø По смешанной схеме (используется схема сложных процентов для целого числа лет и схема простых процентов для дробной части года):

В том случае, когда продолжительность финансовой операции рассчитывается в днях, однозначного определения процента и других параметров финансовой операции нет. Решение будет зависеть от того, как рассчитывается продолжительность года и продолжительность периода финансовой операции.

Таким образом, существует два варианта процентов: точный процент и обыкновенный процент.

При расчете точного процента (exact interest) берется точное число дней в году (365, 366), в квартале (89 – 92), в месяце (28 – 31).

При расчете обыкновенного процента (ordinary) берется приближенное число дней в году (360), в квартале (90), в месяце (30).

Продолжительность периода финансовой операции (например, ссуды) исчисляется также двумя способами: расчет по дням (берется точное число дней) и расчет с приближенным числом дней в месяце (30).

Следовательно, можно выделить три способа расчета процентов:

I. Обыкновенный процент с приближенным числом дней (360/360). Такой способ расчета практикуется в Германии, Дании, Швеции.

II. Обыкновенный процент с точным числом дней (365/360 или АСТ/360). Такой способ расчета практикуется в Бельгии и Франции.

III. Точный процент с точным числом дней (365/365 или АСТ/АСТ). Такой способ расчета практикуется в Великобритании и США.

В российской практике можно встретиться с различными схемами начисления процентов. Эффект от выбора зависит от суммы финансовой операции. Понятно, что использование обыкновенных процентов с точным числом дней ссуды, как правило, дает больший результат, чем применение обыкновенных процентов с приближенным числом дней ссуды.

 

Пример 1.1. Депозит в 200 тыс. руб. положен в банк на 4 года под 15% годовых. Найти наращенную сумму, если ежегодно начисляются сложные проценты.

Решение. Применим формулу (2) и получим F4=200000 (1+0,15)4.

 

Пример 1.2. Годовая ставка простых процентов равна 8,3%. Через сколько лет начальная сумма удвоится?

Решение. Обозначим начальную сумму через Р. Тогда Р*(1+n*0,083)³ 2Р, т.е. 1+n*0,083)³ 2, n³ 1/0,083. С точностью до целых – через тринадцать лет.

 

Пример 1.3. Пусть P=1000, r = 10%- сложные проценты. Найти наращенную сумму за за n=3 промежутка начисления.

Решение. Р=1000; F1=1000 (1+0,1)1=1100; F2,=1100*1,1=1210; F3=1210*1,1=1331,1.

 

Пример 1.4. Годовая ставка сложных процентов равна r =8%. Через сколько лет начальная сумма удвоится?

Решение. Р(1+0,08)n³2Р; (1+0,08)n ³ 2; n* ln(1,08)³ ln2;
n³ (ln(2)/ln(1,08))=9.

Пример 1.5. М.Е. Салтыков-Щедрин описывает в «Господах Головлевых» такую сцену: «Порфирий Владимирович сидит у себя в кабинете, исписывая цифирными выкладками листы бумаги. На этот раз его занимает вопрос: сколько было бы у него теперь денег, если бы маменька подаренные ему при рождении дедушкой «на зубок» сто рублей не присвоила себе, а положила в ломбард на имя малолетнего Порфирия? Выходит, однако, немного: всего восемьсот рублей».

Требуется рассчитать по приведенным цифрам, какой процент платил в то время ломбард по вкладам. Возраст Порфирия в момент его расчетов примем равным пятидесяти годам.

Решение. В нашем примере нужно воспользоваться формулой сложных процентов, обозначив через х – искомый процент по вкладам (годовую ставку сложных процентов), и взяв n=50.

Получим: 800=100(1+х)50.

Логарифмируя с помощью таблицы логарифмов, получим решение следующим образом: lg800=lg100+50lg(1+x).

Антилогарифм 1+х=1,039. Тогда х=3,9%.

Пример 1.6. Чему равна будущая стоимость одной денежной единицы через 9 лет при ставке процента 10%.

Решение. Так как n=9, r=10%, то согласно таблице мультиплицирующих множителей М(9,10)=2,358.

 

Пример 1.7. Предоставлена ссуда в размере 7 тыс. руб. 10 февраля с погашением 10 июня под 20% годовых (простая ставка, год не високосный). Рассчитать различными способами сумму к погашению F.

Решение.

1. Подсчитаем точное число дней, которые берется в расчет при выплате процентов. По табл. 161-41=120 (дней)

2. Подсчитаем приближенное число дней ссуды: t= 18 дней февраля (59-41) + 90 дней (март-июнь) + 10 дней июня=118 дней.

3. АСТ/АСТ F=7 (1+120/365*0,2)=7460руб.

4. 360/360 F=7 (1+118/360*0,2)=7459руб.

5. 365/360 F=7 (1+120/360*0,2)=7467руб.

 

Пример 1.8. 14 марта в банк положили сумму 1000 у.е. до востребования под ставку 12% годовых сложных процентов. Какую сумму снимет вкладчик 1 сентября?

Решение. Однозначного решения нет. Выберем способ расчета 360/360, т.е. в году 360 дней, в месяце 30 дней.

1) Найдем, какую долю от года составляет промежуток времени, в течение которого вклад хранился в банке: t=(30 дней * 5 месяцев +17 дней) / 360. Дни считаем так: из порядкового номера последнего дня вычитается порядковый номер первого дня.

2) Найдем, какую сумму снимет вкладчик 1 сентября: Fn= 1000 *(1+0,12)227/360.

 

Пример 1.9. Пусть сумма начального вклада Р=750 у.е. наращивается по годовой ставке r=20%. Принятая схема начисления: по простым процентам. Подсчитать проценты за n=4 промежутков начисления (лет). Представить последовательность наращенных сумм за 4 года.

Решение. Так как под процентами (процентными деньгами) понимают величину дохода (приращение денег) In= Fn -P, то сначала найдем Fn

Fn – это наращенная за n лет сумма, которая находится по формуле Fn =P + n´r´P=Р(1+nr), где r – дробное измерение ставки. Таким образом, F4=750(1+4´0,2)=750 1,8=1350.

Следовательно, I4= F4-P=1350-750=600 (у.е.) – процентные деньги за 4 года.

Последовательность наращенных сумм в случае простых процентов представляет арифметическую прогрессию: F1= Р(1+1´r)= 750(1+0,2)= 900; F2= Р(1+2´r)= 750(1+0,4)= 1050; F3= Р(1+3´r)= 750(1+0,6)= 1200; F4 = Р(1+4´r)=750(1+0,8)=1350, каждый следующий элемент последовательности отличается от предыдущего на 150 у.е., т.е. приросты денежных сумм для любого периода составляют 150 у.е. –постоянную долю от первоначальной суммы Р=750 у.е.

Пример 1.10. Предприниматель получил в банке ссуду в размере 25 тыс. руб. сроком на 6 лет на следующих условиях: для первого года процентная ставка равна 10% годовых, на следующие 2 года устанавливается маржа в размере 0,4% и на последующие годы маржа равна 0,7%. Найти сумму, которую предприниматель должен вернуть в банк по окончании срока ссуды.

Решение. Р=25, n1=1, n2=2, n3=3; i1=0,1; i2=0,104; i3=0,107. Тогда F6=25(1+0,1)(1+0,104)2(1+0,107)3=45,469 тыс.руб.

Пример 1.10. Семья положила Р=12 000 руб. на срочный вклад при срочной процентной ставке r=11% годовых (с учетом выплаты процентов на проценты). Сколько денег семья получит через два года, при условии, что в течение двух лет деньги сниматься со сберкнижки не будут?

Решение. Выплата процентов на проценты означает, что одна и та же ставка r начисляется для каждого следующего промежутка начисления на результат предыдущего начисления (наращенную сумму за предыдущий период начисления или, что т о же самое, на сумму, наращенную на начало данного периода начисления). По формуле сложных процентов наращенная сумма за n лет составит величину Fn= Р(1+r)n. Следовательно, в нашем случае при n=2 F2=Р(1+r)2=12000 (1+0,11)2=12000´1,112=1,2321´12000=14785,2

Пример 1.11. В банк вложены деньги в сумме 5 тыс. руб. на 2 года с полугодовым начислением процентов под 20% годовых. Найти величину капитала через 2 года. Проанализировать, изменится ли величина капитала к концу двухлетнего периода, если проценты будут начисляться ежеквартально?

Решение. В этом случае начисление процентов производится 4 раза по ставке 10%, тогда Р=5, n=2, m=2, r(m) = r(2) = 0,2 и

1)

3) В этом случае начисление происходит 8 раз, m=4, n=2 по ставке 5% (20%/4) и

Пример 1.12. Банк предоставил ссуду в размере 10 тыс. руб. на 30 мес. под 30% годовых на условиях ежегодного начисления процентов. Какую сумму предстоит вернуть банку по истечении срока?

Решение. n=2,5; целое число лет=2; дробная часть года=0,5.

По схеме сложных процентов F2,5=10(1+0,3)2+0,5=19,269 тыс.руб.

По смешанной схеме F2,5=10(1+0,3)2 (1+0,5*0,3)=19,435 тыс. руб.

Т.о. для банка смешанная схема начисления более выгодная.

 





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 3626 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

3518 - | 3154 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.