Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Влияние кривизны Земли на измеренные расстояния




 

«Жил на свете человек,

скрюченные ножки…».

Из детской книжки стихов.

 

В этом стишке не только ножки скрюченные. Всё там скрючено и кривенько. Да и не только там. Утром, идя на работу, учёбу, или вечером, приближаясь к дому, мы никак не ощущаем кривизны Земли (тоже, как выяснено, кривенькая). Больше нам мешают всякие кривые неровности на нашем пути. Поэтому кривизна Земли в некоторой степени вещь относительная.

При выполнении геодезических работ на сравнительно небольших территориях поверхность Земли можно принимать за плоскую, и измеренные расстояния на плоском изображении принимать равными соответствующим расстояниям на сферической поверхности. Чаще всего и приходится выполнять именно такие работы, на небольших по размерам территориях: в пределах площадки строительства, в пределах шахтного поля и т.п. При измерениях значительных по величине расстояний необходимо учитывать влияние кривизны поверхности Земли. Но, как будет показано дальше, измерение некоторых расстояний требует учёта кривизны Земли и для сравнительно небольших расстояний на её поверхности.

Для простоты изложения примем, что Земля представляет собой шар радиусом R (радиус Земли, представляемой в виде шара, принимают равным 6371,11 км). Предположим, что по поверхности шара из точки А в точку В перемещается (перекатывается) материальная точка (рис. 2.1), при этом расстояние S = АВ, которое пройдёт эта точка по поверхности шара, равно

, (2.1)

где α - центральный угол дуги АВ (в радианах).

Предположим, что точка движется по касательной в точке А к поверхности шара и пройдёт по ней путь Sо = AB', соответствующий движению по поверхности шара на пути S. Для величины So можно записать:

. (2.2)

Разность в пройденных путях ΔS = (Sо - S) = R (tgα – α) и будет являться ошибкой в измеренном расстоянии из-за кривизны Земли.

Для малых значений углов α при разложении в ряд функции tg α получим

, (2.3)

а после подстановки в выражение для S -

, (2.4)

поскольку α = S / R.

Аналогично рассмотрим влияние кривизны Земли на определение вертикальных расстояний.

Математически установлено, что погрешнсоть (отклонение) h, равная разности отрезков ОВ' и OВ = R, находится через принятые ранее параметры по формуле

(2.5)

или, ввиду малой разности S и S о при малых α и h, - по формуле

. (2.6)

 

Рис. 2.1. Учет влияния кривизны Земли.

 

Оценка возможных погрешнсотей при измерении вертикальных и горизонтальных расстояний приведена в табл. 2.1.

Таблица 2.1

Погрешности в измеренных расстояниях из-за кривизны Земли

Измеренное расстояние S, км   0,1              
Абсолютная погрешность S, м   -   -   -   0,001   0,008   1,03   8,2   65,7
Относительная погрешность ΔS/S           1/1250000   1/50000   1/25000   1/3000
Абсолютная погрешность h, м   0,001   0,078   0,314   1,96   7,8      

 

Точность измерения линий в геодезических сетях высших классов определяется относительной погрешностью порядка 1:400000, что практически является соизмеримым для S = 10 км (и, конечно, более 10 км). До 10 км при измерении горизонтальных расстояний во многих случаях влиянием кривизны Земли можно пренебречь.

Автор приностит свои извинения, что вводит в рассказ понятие относительная погрешнсоть, да и абсолютная погрешнсоть, без всяких необходимых пояснений этого понятия. Получается понятие без понятия. Но дальше об этом будет сказано несколько подробнее, а сейчас автор, думается, правильно посчитал, что читателю понятно слово погрешнсоть даже без определения этого слова. Ну а относительная погрешность – это та же погрешность, но выраженная просто в другой форме. Например, если абсолютную погрешность 8 мм разделить на измеренное расстояние 10 км (см. табл. 2.1), то как раз и получится вот такая относительная погрешность: 1/1250000.

Совсем другая картина наблюдается при оценке погрешностей в вертикальных отрезках. Как раз об этом и было предупреждение выше. Точность определения высот при геодезических работах, например, при топографической съёмке, определяется величиной 5 см, т.е. уже для расстояний S = 1000 м необходимо учитывать кривизну Земли. Если же точность измерений выше, например 5 мм и меньше, то учёт кривизны Земли следует начинать примерно для расстояний 250 – 300 м, что легко проверить обратным расчетом по формуле (2.6).

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 2873 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2230 - | 2038 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.