Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Правила сложения и умножения вероятностей




Элементы теории вероятностей.

 

Математические модели финансовой математики носят вероятностный характер.

Теория вероятностей является разделом математики, в котором изучаются математические модели случайных экспериментов, исходы которых нельзя определить однозначно условиями проведения опыта. При этом предполагается, что сам эксперимент может быть повторен (хотя бы в принципе) любое число раз при неизменном комплексе условий, а исходы эксперимента обладают статистической устойчивостью.

Например, 1) при однократном подбрасывании монеты возможны следующие исходы (события): выпадение «герба» или «решки». В результате проведения опыта возникает лишь один исход, однако, до проведения опыта нельзя установить какой; 2) проводя контроль качества деталей, так же возможны два исхода: не бракованная или бракованная. Однако до проведения опыта опять же нельзя сказать, какой исход будет установлен для каждой детали; 3) предположим, нас интересует число вызовов, которое поступит за определенный промежуток времени на телефонную станцию. Как и в предыдущих примерах, интересующую величину до проведения эксперимента определить невозможно, хотя очевидно, что результатом будет целое неотрицательное число.

Примеров такого рода можно привести сколь угодно. Принято говорить, что возникающее в ходе эксперимента событие (исход) является случайным.

В чем состоит общность опытов со случайными исходами? Оказывается, несмотря на то, что результат каждого из перечисленных выше экспериментов предсказать невозможно, на практике уже давно была замечена закономерность: при проведении большого количества испытаний наблюденные частоты появления каждого случайного события (это отношение числа его появлений к общему числу испытаний) стабилизируются, то есть все меньше отличаются от некоторого числа, называемого вероятностью события. Так, при многократном бросании игральной кости «шестерка» выпадает в среднем в каждом шестом случае. Такое свойство устойчивости частоты позволяет, не имея возможности предсказать исход отдельного опыта, достаточно точно прогнозировать свойства явлений, связанных с рассматриваемым опытом. Поэтому методы теории вероятностей в современной жизни проникли во все сферы деятельности человека, причем не только в естественно-научные, экономические, но и гуманитарные (например, историю, лингвистику и т.д.).

 

 

 

Вероятность события.

Вероятностью появления события А называют отношение числа исходов, благоприятствующих наступлению этого события, к общему числу всех единственно возможных и несовместных элемен­тарных исходов.

Обозначим число благоприятствующих событию А исходов через М, а число всех исходов — N:

P(A)=M/N,

где М — целое неотрицательное число, 0 £ М £ N.

Другой тип объективной вероятности определя­ется исходя из относительной частоты (частости) появления события. Например: если некоторая фирма в течение времени провела опрос 1 000 покупателей нового сорта напитка и 20 из них оценили его как вкусный, то мы можем оценить вероятность того, что потребителям понравится новый напиток как 20/1 000 = 0,02. В этом примере 20 — это час­тота наступления события, а 20/1 000 = 0,02 — это относительная частота.

Относительной частотой события называется от­ношение числа испытаний т, при которых собы­тие появилось, к общему числу проведенных ис­пытаний п.

W(A) == т/п

где т — целое неотрицательное число, 0 £ т £ п.

Статистической вероятностью события А назы­вается относительная частота (частость) этого со­бытия, вычисленная по результатам большого числа испытаний. Будем обозначать ее Р*(А). Сле­довательно,

При очень большом числе испытаний статисти­ческая вероятность приближенно равна классичес­кой вероятности, т. е.

Для определения вероятности выпадения 1 или 2 при подбрасывании кости нам необходимо только знать «модель игры», в данном случае — кость с 6 гранями. Мы можем определить наши шансы теоретически, без подбрасывания кости, это априорная (доопытная) вероятность. Во втором примере мы мо­жем определить вероятность только по результатам опыта, это — апостериорная (послеопытная) веро­ятность. То есть классическая вероятность — апри­орная, а статистическая — апостериорная.

Какой бы вид вероятности ни был выбран, для их вычисления и анализа используется один и тот же набор математических правил.

Свойства вероятности, вытекающие из классического определения.

1. Вероятность достоверного события равна 1, т. е. P( W ) =1.

Действительно, если событие А =W, то М = N, значит, Р ( W ) = N/N = 1.

2. Если событие невозможное, то его вероятность равна 0, т. е. Р (Æ)= 0.

Если А = Æ, то оно не осуществится ни при од­ном испытании, т. е. М = 0 и Р( Æ ) = 0/N = 0.

3. Вероятность случайного события есть поло­жительное число, заключенное между 0 и 1, т. е. 0£ Р(А) £1.

4. Сумма вероятностей противоположных собы­тий равна 1, т. е. Р(А) + Р() = 1. В самом деле,

Р() = 1 - P(A), следовательно, Р(А)+Р()= 1.

Например, если вероятность извлечения туза из колоды, состоящей из 52 карт, равна 4/52, то вероятность извлечения карты, не являющейся тузом, равна1 - 4/52 = 48/52

 

При нахождении вероятности классическим способом часто используются формулы комбинаторики.

Комбинаторика.

При решении задач, заключающихся в определении вероятности, наибольшую трудность представляет подсчет общего числа элементарных исходов, общих и благоприятствующих данному событию. В этом случае полезно обратиться к формулам и правилам комбинаторики.

Комбинаторика происходит от латинского слова «combinatio» — соединение.

Группы, составленные из каких-либо предметов (например, кубиков, букв, чисел и т.п.), называются соединениями (комбинациями, подмножествами, выборками). Предметы, из которых состоят соединения, называются элементами.

Одной из задач комбинаторики является составление различных комбинаций из элементов конечного множества и изучение способов пересчета таких комбинаций, удовлетворяющих тем или иным условиям.

Условно комбинаторика делится на две части:

1) Пусть имеется n различных элементов а1, а2, …аn. Каждый из этих элементов в комбинацию может войти один раз. Это комбинаторика без повторений.

2) Дано n типов элементов: «мешок» элементов типа а1, типа а2, типа а3 и т.д. В каждую комбинацию может войти несколько элементов одного типа. Либо имеется n различных элементов а1, а2, …аn. При этом элемент после выбора снова возвращается в группу. Это комбинаторика с повторениями.

Важнейшими характеристиками комбинаций являются: 1) состав, входящих в них элементов; 2) порядок вхождения элементов в комбинацию.

Различают три типа соединений: размещения, перестановки, сочетания.

При решении задач на нахождение количества комбинаций необходимо:

1) определить тип элементов, входящих в комбинацию;

2) определить, что нас интересует в комбинации: состав элементов, порядок их вхождения в комбинацию или и то, и другое;

3) определить тип соединения и выбрать соответствующую формулу для расчета.

При решении задач на подсчет числа комбинаций в комбинаторике применяются два правила: правило сложения и правило умножения.

Правило сложения: Если элемент А1 может быть выбран n1 способом, элемент А2 – другими n2 способами, А3 – отличными от первых двух n3 способами и т.д., Ак –nk способами, отличными от первых (k-1), то выбор одного из элементов: или А1, или А2, или А3, … или Ак может быть осуществлен n1+n2+n3+…+Ак способами.

Правило произведения: Если элемент А1 может быть выбран n1 способами, после каждого такого выбора А2 может быть выбран n2 способами и т.д., после каждого (k-1) элемент Аk может быть выбран nk способами, то выбор элементов А1, А2,…, Ак в указанном порядке может быть осуществлен n1n2…nk способами.

Размещения.

Размещениями из n элементов по k в каждом называются такие комбинации, которые характеризуются и порядком и составом входящих в них элементов.

Обозначения и формулы вычисления.

- число размещений из n по k без повторений.

- число размещений из элементов n типов по k с повторениями.

Сочетания.

Сочетаниями из n элементов по k в каждом называются такие комбинации, которые характеризуются только составом входящих в них элементов.

Обозначения и формулы вычисления.

, где 0≤ k ≤ n - число сочетаний из n по k без повторений.

- число сочетаний из элементов n типов по k с повторениями.

Перестановки.

Перестановками из n элементов называются такие комбинации, которые характеризуются только порядком входящих в них элементов при фиксированном в них составе.

Обозначения и формулы вычисления.

Число перестановок из n элементов это то же самое, что число размещений из n элементов по n в каждом, поэтому

Pn = n·(n-1)·(n-2)…2·1= n! —число перестановок из n без повторений.

- число перестановок с повторениями из k1 элементов первого типа, k2 элементов второго типа, … kn элементов n типа.

Замечание. Между размещениями, сочетаниями и перестановками можно установить связь по следующей формуле

Геометрическое определение вероятности.

Пусть в результате испытания возможно бесконечное число исходов. При этом исходы несовместны и ни один из них не имеет преимущества перед другими. Для решения задачи о вероятности используется геометрическая интерпретация вероятности. В данном случае Ω представляет собой подмножество пространства R1(числовой прямой), R2(плоскости), Rn (n-мерного евклидова пространства). В пространстве R1 в качестве подмножеств будем рассматривать лишь промежутки или их объединения, то есть подмножества, которые имеют длину, в пространстве R2 — площадь, в R3 — объем и т.д.

Под мерой μ(А) подмножества А будем понимать его длину, площадь или объем в зависимости от того, какому пространству принадлежит Ω. Будем считать, что пространство элементарных исходов Ω имеет конечную меру, а вероятность попадания «случайно брошенной» точки в любое подмножество Ω пропорциональна мере этого подмножества и не зависит от его расположения и формы.

Вероятностью события А в этом случае называется число Р(А), равное отношению меры множества А к мере множества Ω:

Геометрическое определение вероятности сохраняет свойства, рассмотренные в классической схеме.

 

Правила сложения и умножения вероятностей.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 502 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2267 - | 2040 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.