Закон сохранения массы вещества служит основой для осуществления реакций между различными веществами. Исходя из него, можно производить разнообразные расчеты по уравнениям химических реакций.
Закон постоянства состава: Всякое чистое вещество молекулярной структуры, независимо от способов его получения, имеет постоянный качественный и количественный состав.
В настоящее время известен целый ряд веществ, например оксидов, сульфидов, нитридов (соединений металлов с азотом), карбидов (соединений металлов с углеродом), силицидов (соединений металлов с кремнием) и других кристаллических неорганических соединений, которые имеют немолекулярную структуру, их состав зависит от условий получения. Так, оксид титана (II) в действительности имеет состав от ТiO0,7 до ТiO1,3. Такого типа вещества немолекулярной структуры закону постоянства состава не подчиняются.
Закон кратных отношений: Если два элемента образуют друг с другом несколько химических соединений, массы одного из элементов, приходящиеся в этих соединениях на одну и ту же массу другого, относятся между собой как небольшие целые числа.
Способность элементов вступать в соединения лишь определенными порциями свидетельствует о дискретном строении вещества. Например, азот и кислород дают 5 оксидов:
N2O, NO, N2O3, NO2, N2O5.
Количества кислорода в них, приходящиеся на одно и то же количество азота, относятся как целые числа – 1: 2: 3: 4: 5. Это объясняется тем, что одинаковое количество атомов азота в молекулах разных оксидов связано с различным числом атомов кислорода.
Закон простых объемных отношений: Объемы вступающих в реакцию газов относятся друг к другу, а также к объемам образующихся газообразных продуктов реакции, как небольшие целые числа.
Например, в реакции синтеза хлористого водорода из элементов, протекавшей по уравнению:
1 моль 1 моль 2 моль
Н2 + Сl2 = 2НС1
Л 22.4 л 2 ∙ 22.4 л
один объем водорода реагирует с одним объемом хлора и образуется два объема хлористого водорода (при одинаковых условиях)
V(Н2): V(Сl2): V(НС1) = 1: 1: 2.
Закон Авогадро: В равных объемах любых газов и паров при одинаковых условиях содержится одинаковое количество молекул.
Закону Авогадро подчиняются только газообразные вещества. В газах промежутки между молекулами велики по сравнение с их размерами, а собственный же объем молекул очень мал. Общий объем газов определяется, главным образом, расстояниями между молекулами, примерно одинаковыми у всех газов (при одинаковых внешних условиях).
Если вещество находится в твердом или жидком состоянии, то его объем зависит от размеров самих молекул. Допустим, мы имеем моль воды и моль этилового спирта. Учитывая, что молярная масса воды М (Н2О) = 18 г/моль, а плотность воды равна примерно 1 г/мл, найдем, что 1 моль воды, имеющий массу m = 18 г, займет объем при комнатной температуре:
V = m /r = 18 г/1 г/мл = 18 мл.
Моль этилового спирта, имеющий массу 46 г и плотность при тех же условиях r (С2Н5ОН) = 0,8 г/мл, займет объем:
V = m /r = 46 г/0,8 г/мл = 57,5мл.
Если же воду и спирт испарить и полученные объемы паров привести к нормальным условиям, то они будут равны и составят 22400 мл, то есть увеличатся в среднем в 1000 раз. Это говорит об увеличении расстояний между молекулами веществ при переходе их из твердого или жидкого состояния в газообразное.
Из закона Авогадро выведены следующие следствия:
Следствие I: Моль любого газа при нормальных условиях занимает один и тот же объем, равный приблизительно 22,4 л.
Этот объем называется молярным объемом и обозначается V мол :
V мол = 22,4 л/моль = 22,4 м3/кмоль.
Масса одного и того же объема газа тем больше, чем больше масса его молекул. Если в равных объемах газов при одинаковых условиях содержится одинаковое число молекул, то, очевидно, что отношение масс равных объемов газов будет равно отношению их молекулярных масс или отношению численно равных им молярных масс, то есть
m 1/ m 2 = M1/M2,
где m 1 - масса объема первого газа, m 2 - масса такого же объема второго газа,М1 - молярная масса первого газа,М2 - молярная масса второго газа.
Отношение массы определенного объема одного газа к массе такого же объема другого газа, взятого при тех же условиях, называется относительной плотностью первого газа ко второму (обозначается буквой - D).
D = m 1/ m 2 при V 1 = V 2.
Относительная плотность первого газа по второму газу может быть рассчитана как отношение молярных масс этих газов
D = M1/M2,
откуда
М1 = М2 ∙ D.
Обычно плотность газов определяют по отношению к водороду М(H2) = 2 г/моль или к воздуху М (возд.) = 29 г/моль.
В итоге получим:
М1 = 2 D H2 и
М1 = 29 D возд.
Таким образом, зная плотность газа по водороду или по воздуху, можно легко определить его молярную, а, следовательно, и относительную молекулярную массу и сформулировать 2-е следствие из закона Авогадро.
Следствие II. Молярная масса вещества (М), а значит, и относительная молекулярная масса (Мr) вещества в газообразном состоянии численно равна удвоенной плотности паров этого вещества по водороду.
Измерения объемов газов обычно производят при условиях, отличных от нормальных.
Нормальными условиями считаются:
давление Р 0 = 101,325 кПа (760 мм Т. Ст., 1 атм.),
температура Т 0 = 273 К (t 0 = 0 °С).
Для приведения объема газа к нормальным условиям можно пользоваться уравнением, объединяющим газовые законы Бойля-Мариотта и Гей-Люссака:
где V - объем газа при давлении Р и температуре Т, V 0 - объем газа при нормальном давлении Р 0 = 101,3 кПа и температуре Т 0 = 273 К.
Закон эквивалентов: Из закона постоянства состава следует, что химические элементы соединяются друг с другом в строго определенных количественных соотношениях.
Возьмем, например, ряд соединений, в состав которых входит элемент водород: HCl – хлористый водород, H2O – вода, NH3 – аммиак, CH4 - метан.
Атомы водорода соединяются со строго определенным числом атомов другого элемента, а поскольку атом каждого элемента имеет вполне определенную атомную массу, то количества соединяющихся друг с другом элементов строго определены. Так, в приведенных соединениях, формулы которых НС1, Н2О, NH3 и СН4, на 1 атом водорода приходится: 1 атом хлора, 1/2 атома кислорода, 1/3 атома азота, 1/4 атома углерода.
Химическим эквивалентом элемента называется реальная или условная частица, которая может присоединять, замещать, высвобождать или каким – либо другим образом быть равноценна одному иону водорода H+ в ионообменных реакциях или одному электрону в окислительно-восстановительных реакциях.
Исходя из определения, эквивалент для водорода равен 1 атому, а все, что соединяется, замещает или иным образом соответствует 1 атому водорода, будет эквивалентом другого вещества.
Так, в вышеприведенных соединениях НСl, Н2О, NН3 и СН4 эквивалент хлора будет равен 1 атому, кислорода – 1/2 атома, азота – 1/3 атома и углерода – 1/4 атома. 3 последние частицы являются не реальными, а условными.
Эквивалент элемента в соединении легко рассчитать по формуле:
Э = 1/В, где
Э – эквивалент элемента;
В – валентность элемента в соединении.
Количество эквивалентов вещества выражают в молях.
Масса 1 моль эквивалентов вещества называется молярной массой его эквивалента (Mэкв).
Размерность молярной массы эквивалента – [г/моль].
Молярную массу эквивалента элемента можно рассчитать по формуле:
Mэкв = М/В,
где Mэкв – молярная масса эквивалента элемента; М – молярная масса элемента; В – валентность элемента в соединении.
Так, в приведенных выше примерах молярные массы эквивалентов хлора, кислорода, азота и углерода соответственно равны:
Мэкв (Cl) = 35,5/1 = 35,5 г/моль,
Мэкв (O) = 16/2 = 8 г/моль,
Мэкв (N) = 14/3 = 4,66 г/моль,
Мэкв © = 12/4 = 3 г/моль.
Понятия об эквивалентах и молярных массах эквивалентов распространяются также на сложные вещества.
Эквивалентом сложного вещества называется такое его количество, которое взаимодействует без остатка с одним эквивалентом водорода или с одним эквивалентом любого другого вещества.
Для определения эквивалентов простых и сложных веществ удобно использовать понятие фактор эквивалентности f.
Фактором эквивалентности для вещества (f) называется число, показывающее какая доля частицы (атома, молекулы) этого вещества равноценна одному иону водорода H+ в реакциях обмена или одному электрону в окислительно-восстановительных реакциях.
Эквивалент элемента можно рассчитать по формуле:
Э = 1 ∙ fэ лем. = 1/В.
В свою очередь, фактор эквивалентности может быть найден:
для элемента – f элем. = 1/валентность элемента
для кислоты – f кислоты = 1/основность кислоты
для основания – f основания = 1/кислотность основания
для соли (средней) – f соли. = 1/ n ∙ В,
где n – число атомов металла, В – валентность металла.
Таким образом, эквиваленты и молярные массы эквивалентов простых и сложных веществ можно рассчитать по формулам, приведенным в табл. 1.1.
Как видно из приведенных формул, молярная масса эквивалента, как элемента, так и сложного вещества не всегда является постоянной величиной. Эквивалент и молярная масса эквивалента элемента зависят от валентности, которую проявляет элемент в соединении.
Таблица 1.2