Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Процедура простого случайного отбора




По сформированной основе выборки легко реализовать процедуру простого случайного отбора. Для этого требуется соблюдение равенства шансов попадания единиц отбора в выборочную совокупность. Выделяют: а) простой случайный бесповторный отбор и б) простой случайный повторный отбор.

Осуществляться каждая из разновидностей процедуры может различными способами. Опишем один из них. Пусть основа выборки содержит N единиц. Тогда, чтобы выбрать п единиц наблюдения в выборочную совокупность, напишем все номера от 1 до N на отдельныe карточки, тщательно их перемешаем и наугад вынем одну из них. Номер вытащенной карточки задает соответствующую единицу наблюдения, попавшую в выборочную совокупность. Затем карточка возвращается на место, они снова перемешиваются, наугад, вынимается новая карточка, и так далее продолжается п раз. Так реализуется процедура простого случайного повторного отбора. Если извлеченную карточку не возвращать назад, а откладывать в сторону, то тот же процесс приведет нас к простой случайно бесповторной выборке размером в п единиц наблюдения или, как еще говорят, объемом в n единиц.

Описанная процедура простого, случайного отбора становится чрезвычайно трудоемкой, если число N, задающее объем основы вы­борки, велико. Главная трудность состоит в том, что обеспечение равной вероятности попадания единицы наблюдения в выборочную совокупность требует очень тщательного перемешивания.

Чтобы устранить трудности, возникающие при исследовании больших генеральных совокупностей (а именно таких большинство в социологии), для реализацию простого случайного отбора пользуются так называемыми таблицами случайных чисел. Они содержат те или иные случайные цифры, полученные путем реализации некоторого физического случайного процесса, В литературе приводятся различные последовательности случайных -чисел объемом от нескольких десятков до миллиона цифр (табл. 14).

Продемонстрируем, как работать с таблицей случайных чисел, на гипотетическом примере, когда из совокупности заранее прону­мерованных 300 единиц необходимо выбрать 7 единиц наблюдения. Поскольку N= 300 — трехзначное число, а в табл. 14 даны пяти­значные числа, будем использовать только три последних цифры каждого числа.

Начиная с первого числа, двигаясь по строке, получим первый номер 97. Числа более 300 пропускаем и, продолжая этот процесс далее, получим ряд чисел: 296, 209, 13, 157, 147, 32.

Это и есть номера единиц наблюдения, попавших в формируемую выборку.

При организации бесповторного отбора приходится пропускать и числа (если они попадаются), которые встречаются второй раз в этом ряду.

Начинать процесс выбора случайных чисел можно с любого места таблицы и вести его в любом направлении (по строкам, столбцам и т. п.) или выбирая только определенные столбцы. Если име­ющиеся под рукой таблицы достаточно длинны, то при решении очередной задачи выбора рекомендуется начинать с нового места таблицы.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 396 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2574 - | 2263 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.