Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Линейное программирование




Общая и основная задачи линейного программирования (ЛП). Основные теоремы ЛП. Геометрический метод решения задач ЛП. Симплек-метод: определение первоначального допустимого базисного решения; проверка решения на оптимальность; переход к другому допустимому решению. Двойственные задачи: их свойства; теоремы двойственности; объективно обусловленные оценки и их смысл. Транспортная задача: экономико-математическая модель транспортной задачи; нахождение первоначального базисного распределения поставок (метод «северо-западного» угла, метод наименьших затрат); критерий оптимальности базисного распределения поставок; перераспределение поставок; вырождение транспортной задачи; открытая модель транспортной задачи. Элементы теории игр: основные понятия; антагонистические игры, платежная матрица; решение игр в смешанных стратегиях; геометрические решения игр размера 2xn, mx2; приведение матричной игры к задаче ЛП.

 

Математические методы в экономике.

Элементы теории массового обслуживания: основные понятия, классификация СМО; марковский случайный процесс; уравнения Колмогорова; финальные вероятности; процесс гибели и размножения; СМО с отказами; СМО с ожиданием (очередью). Задача межотраслевого баланса (модель Леонтьева): управления межотраслевого баланса; продуктивные матрицы; ограничения на ресурсы; прибыльные матрицы. Управление запасами: основные понятия; модель производственных поставок; модель поставок со скидкой. Модели динамического программирования: общая постановка задачи; принцип оптимальности и уравнения Беллмана; задача о распределении средств между предприятиями.

 

Дискретная математика.

Высказывания, логические операции над ними. Равносильность формул логики высказываний. Алгебра Буля. Представление булевой функции формулой логики высказываний. Закон двойственности. Нормальные и совершенные нормальные формы формул. Предикаты, логические операции над ними. Кванторные операции. Формулы логики предикатов, их равносильность, нормальная форма. Комбинаторные схемы. Основные понятия и определения теории графов. Изоморфизм. Матричное задание графов. Операции над графами. Кратчайший путь между вершинами. Алгоритм Дейкстры. Поток в транспортной сети. Теорема Форда-Фалкерсона. Задача о максимальном потоке. Алгоритм Форда-Фалкерсона.

 

Список учебной литературы

1. И.Л.Акулич. Математическое программирование в примерах и задачах.—М.: Высшая школа, 1986.

2. И.П.Алдохин. Теория массового обслуживания в промышленности.— М.: Экономика,1980.

3. Я.С.Бугров, С.М.Никольский. Дифференциальное и интегральное исчисления.—М.: Наука, 1990.

4. Я.С.Бугров, С.М.Никольский. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного.— М: Наука, 1988.

5. Я.С.Бугров, С.М.Никольский. Элементы линейной алгебры и аналитической геометрии.—М.: Наука, 1990.

6. Е.С.Вентцель. Прикладные задачи теории вероятностей.—М.:Наука,1984.

7. В.Е.Гмурман. Курс теории вероятностей и математической статистики.—М.: Высшая школа, 1980.

8. В.Е.Гмурман. Руководство к решению задач по теории вероятно­стей и математической статистике.—М.: Высшая школа, 1980.

9. П.Е.Данко, А.Г.Попов, Т.Я.Кожевникова. Высшая математика в упражнениях и задачах. Том 1,2.—М.: Высшая школа, 2000.

10. Н.В.Ефимов. Краткий курс аналитической геометрии.—М.: Наука, 1980.

11. В.А.Ильин, Э.Г.Позняк. Линейная алгебра.—М.: Наука, 1974.

12. М.Л.Краснов, А.И.Киселев, Г.Н. Макаренко. Функции комплексного переменного. Операционное исчисление. Теория устойчивости.— М.: Наука, 1981.

13. Ю.Н.Кузнецов, В.И.Кузубов, А.Б.Велощенко. Математическое программирование.—М.: Высшая школа, 1980.

14. А.И.Ларионов, Т.И.Юрченко, А.Л.Новоселов. Экономико—математические методы-—М.: Высшая школа, 1991.

15. Н.С.Пискунов. Дифференциальное и интегральное исчисления Том 1,2.— М.: Наука, 1988.

16. П.Н.Романовский. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа.—М.: Наука, 1986.

17. А.Г.Свешников, А.Н.Тихонов. Теория функций комплексного переменного.—М.: Наука, 1984.

18. Л.Л.Терехов. Экономико—математические методы.—М.: Статистика, 1982.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 491 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2431 - | 2318 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.