Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


П. 2. 7. Числовые характеристики непрерывной случайной величины




Математическим ожиданием непрерывной случайной величины, возможные значения которой принадлежат интервалу [ a, b ], называется определенный интеграл т.е.

М (Х) = (2.7.1)

Если возможные значения случайной величины принадлежат всей числовой оси, то

М (Х) =

при этом предполагается что интеграл существует.

По аналогии с дисперсией дискретной случайной величины определяется дисперсия непрерывной случайной величины:

(2.7.2)

Если возможные значения принадлежат всей оси Ох, то

Свойства М (х) и D (x) формулируются так же, как и соответствующие свойства для дискретной величины.

Величину σx = называют средним квадратическим отклонением случайной величины или стандартом, σx имеет ту же размерность, что и сама случайная величина. Из формулы (12.7.2) нетрудно получить более удобные формулы для вычисления дисперсии, а именно:

(2.7.3)

(2.7.4)

Пример. Случайная величина х задана функцией распределения

Найдите: 1) коэффициент а; 2) М (Х); 3) D (X).

Решение. Используя формулу (2.6.4), получаем

1.

2.

3.

П. 2.8. ПРИМЕРЫ, ПРИВОДЯЩИЕ К ПОНЯТИЮ

НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ.

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

Случайные величины, имеющие нормальное распределение, очень часто встречаются в земледелии и животноводстве, ветеринарии, инженерном деле и в других отраслях знания. Приведем примеры таких величин:

1. масса клубня картофеля;

2. масса одного зерна пшеницы некоторого сорта;

3. содержание жира в молоке, полученного от различных животных;

4. содержание кормовых единиц в суточном рационе шестимесячных телок;

5. масса животного некоторой породы на определенную дату;

6. погрешности измерений.

Для этих величин характерным является то, что на их формирование влияет большое число факторов, причем влияние каждого из них мало и ни один фактор не имеет значительного преимущества перед другими. Эти величины можно отнести к величинам, имеющим нормальный закон распределения, полагая, что их возможные значения не отрицательны.

Определение. Случайная величина X имеет нормальный закон распределения, если ее функция плотности вероятности имеет вид

(2.8.1)

где σ и а - параметры распределения.

График функции f (x) называется кривой нормального распределения. Методами дифференциального исчисления можно установить, что:

1) кривая симметрична относительно прямой х = а;

2) функция имеет максимум при х = а,

3) по мере удаления х от точки а функция убывает и при х → ±¥ кривая приближается к оси Ох;

4) кривая выпукла при и вогнута при и при . График функции f (x) имеет вид, изображенный на рис. 5.

Форма кривой изменяется с изменением параметра σ. С возрастанием σ функция f (x) убывает, кривая становится более пологой и растянутой вдоль оси Ох.

 

 

Рис. 5

Значениям случайной величины, близким к математическому ожиданию, соответствует большая плотность вероятности, т. е. малые отклонения значений случайной величины от ее математического ожидания встречаются более часто, чем большие.

Параметр а есть математическое ожидание случайной величины, а σ - среднее квадратическое отклонение.

Пример 1. Известно, что случайная величина X подчинена нормальному закону распределения, М (Х) = 6, σ2 = 9. Найдите функцию плотности вероятности.

Решение. Имеем а = 6, а = 3:

 

Пример 2. Известно, что случайная величина X подчиняется нормальному закону с функцией плотности вероятности

Найдите М (Х) и D (X).

Решение. Имеем M (X) = 15, D (X) = σ2 = 102 = 100.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 495 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2338 - | 2092 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.