Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


П. 1. 7. Теорема полной вероятности. Формула Байеса




Приведенная ниже формула объединяет теоремы сложения и умножения. Вероятность события A, которое может произойти при условии осуществления одного из несовместных событий В 1, В 2, В 3,... B n, образующих полную группу, определяется формулой

(1.7.1)

Для наступления события A необходимо и достаточно наступления или события AB 1, или события АВ 2, или события АВ 3,..., или события ABn,

А=АВ1+АВ2+АВ3+…+АВп

Так как события АВ i несовместны, то поэтому (1.7.2)

Пример. Азотное удобрение поступает на склад хозяйства из пункта 1 и пункта 2, причем, из 1-го пункта в 2 раза больше, чем из 2-го. Вероятность события = {удобрение из первого пункта удовлетворяет стандарту}0,9, а соответствующая вероятность для второго пункта равна 0,7.Определить вероятность события А = {взятое для пробы на складе хозяйства удобрение удовлетворяет стандарту}.

Решение. Обозначим

событие В1 = {удобрение поступило из пункта 1};

событие В2 = {удобрение поступило из пункта 2};

Находим

, , , ;

 

Событие А имеет большую вероятность, оно практически достоверно, т. е. наступит в среднем в 83 случаях из 100.

Формула Байеса. Рассмотрим следующую задачу. На фермах А и В произошла вспышка заболевания ящуром. Доли заражения скота составляют соответственно 1/6 и 1/4. Случайным образом отобранное из одной фермы животное оказалось заболевшим. Найти вероятность события = {животное выбрано из фермы А}. Обозначим:

А = {отобранное животное заражено};

событие В1 = {животное выбрано из фермы А}, Р(B1) = 0,5;

событие В2 = {животное выбрано из фермы В}, Р(B2) = 0,5;

А/В1 = {животное, отобранное из фермы А, заражено};

A/B2 = {животное, отобранное из фермы В, заражено}.

Вероятность события = {животное выбрано из фермы А и заражено} можно записать в виде Р(А)∙Р(В1/А) = P(B1)∙Р(А/В1), откуда

(*)

или

Заменив в (*) Р(А) на , получим

· (**)

Формула (**) является частным случаем формулы Байеса.

Рассмотрим задачу в общем виде. Пусть в результате испытания произошло событие А, которое могло наступить только вместе с каждым из событий B1, В2, В3,..., Вп, образующих полную группу; P (B1), Р (В2) ,..., Р (Вп) заранее известны. Требуется найти вероятности событий В1, B2, ..., Вп после испытания, когда событие А уже имело место, т. е. P (Bi/A), i =1, 2,..., п.

Проводя рассуждения, аналогичные приведенным при решении задачи, получим формулу

(1.7.3)

Эта формула называется формулой Байеса. По формуле (1.7.3) можно вычислить вероятности событий Вi, когда событие А произошло, т. е. переоценить вероятности.

 

 

П. 1.8. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОПРЕДЕЛЕНИЮ ЧАСТОТЫ ПОЯВЛЕНИЯ СОБЫТИЯ В НЕЗАВИСИМЫХ ИСПЫТАНИЯХ.

ФОРМУЛА БЕРНУЛЛИ

Задача 1. Допустим, что на опытной делянке посеяно 15 семян. Примем, что всхожесть всех семян одинакова и равна 80%. Возможны следующие элементарные события:

А 0 = {число семян, давших росток, равно 0};

А 1 = {число взошедших семян равно 1};

А 2 = {число взошедших семян равно 2};

и т. д. и, наконец,

A 15 = {все семена дадут всходы}.

Как найти вероятности этих событий, в частности, вычислить вероятность того, что из 15 посеянных семян взойдет ровно 12, безразлично в какой последовательности?

Рассмотрим серию из n независимых испытаний, в каждом из которых некоторое событие А имеет одну и ту же вероятность Р (А) = р, не зависящую от номера испытания.

Такая серия испытаний называется схемой Бернулли.

Решим следующую задачу. В условиях схемы Бернулли определим вероятность Pk,n события, состоящего в том, что при п повторениях испытания событие А, которое имеет одну и ту же вероятность появления в каждом испытании, произойдет ровно k раз безразлично в какой последовательности. Элементарными исходами испытаний являются:

событие = {появление события А в i -м испытании} (i = l, 2, 3,..., n), P (Ai) = p;

событие = {непоявление события А в i -м испытании} (i =1, 2, 3,..., п), P ()=1 – p = g.

Предположим, что событие А имело место в k первых испытаниях и не произошло в п–k последующих, т. е. в соответствии с определением произведения событий, произошло событие A1A2A3...Ak ... An. Так как испытания независимы, то, применив теорему умножения вероятностей, получим

.

Число способов наступления сложного события, состоящего в появлении события А именно k раз и непоявлении n – k раз равно числу всевозможных множеств, которые можно образовать из п элементов по k элементов, и отличающихся только составом. Число таких множеств

равно [см. формулу (1.2.3)].

Итак, вероятность наступления события А ровно k раз в серии n - испытаний равно

(1.8.1)

Это формула Бернулли. Здесь п – число повторений независимых испытаний; k – число испытаний, в которых событие А произошло (число успехов); р – вероятность появления события А в одном испытании; g - вероятность непоявления события А в одном испытании (g = 1– p); Pk,n – вероятность сложного события, состоящего в том, что при п испытаниях событие А наступило ровно k раз.

Вернемся к сформулированной выше задаче.

1. Число посеянных семян равно числу независимых испытаний, т. е. n = 15,число «успехов» k = 12, p = 0,8, g = 1 – 0,8 = 0,2. Тогда

Событие «12 из 15» имеет небольшую вероятность. Если наблюдать такие серии повторений испытаний, то 12 успехов из 15 испытаний будут иметь место в среднем в 25 сериях из 100.

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 719 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2256 - | 1995 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.