Галкин С. В.
Краткий курс математического анализа
В лекционном изложении
Для студентов МГТУ им. Н. Э. Баумана
(второй семестр)
М. 2002г.
Лекция 1 Неопределенный интеграл, таблица интегралов.
Функция называется первообразной для функции , если .
Теоремы о первообразных.
Теорема. Если - первообразная для функции , то ( - константа) - тоже первообразная для функции .
Доказательство. .
Теорема. Пусть - две первообразных для функции , тогда они различаются на некоторую константу ( - константа).
Рассмотрим функцию , она непрерывна и дифференцируема на всей числовой оси, как и функции . Тогда для любых конечных значений по формуле конечных приращений Лагранжа .
Следовательно,
Неопределенным интегралом (интеграл от функции по ) называется совокупность всех первообразных функций для функции .
.
Функция , стоящая под знаком интеграла, называется подинтегральной функцией, а выражение - подинтегральным выражением..
Свойства неопределенного интеграла.
Свойства неопределенного интеграла можно условно разделить на две группы. В первую группу собраны свойства, вытекающие из того, что интегрирование – операция, обратная дифференцированию. Во вторую группу собраны свойства линейности. Эти свойства вытекают из того, что интегрирование, как и дифференцирование – линейная операция и определяют линейную операцию.
Первая группа свойств.
1) .
2)
3)
4) .
Докажем первое свойство.
Так как
Здесь - первообразная для .
Докажем второе свойство.
Обозначим Тогда , а по первому свойству. Поэтому функции являются первообразными для функции . Следовательно, по теоремам о первообразных, они различаются на константу, т.е. или
Третье свойство следует из первого:
Четвертое свойство следует из второго, если вспомнить, что с дифференциалом первого порядка можно обращаться как с алгебраическим выражением (свойство инвариантности формы записи первого дифференциала).
Поэтому надо доказать два первых свойства.
Вторая группа свойств.
1) свойство суперпозиции
2) свойство однородности .
Доказательства того и другого свойств проводятся аналогично. Дифференцируем (по свойствам первой группы) левую и правую часть равенства, приходим к тождеству. Затем из теорем о первообразных заключаем, что левая и правая часть равенства, как первообразные одной и той же функции, различаются на константу. Эта константа может быть формально включена в неопределенный интеграл в левой или правой части равенства.
Для того, чтобы вычислить интеграл от функции, проще всего «угадать» первообразную для этой функции по таблице для производных, переписав эту таблицу в обратном порядке. Запишем интегралы для основных элементарных функций.
1) . Эти формулы лучше запомнить, они очень часто встречаются.
2)
3)
4)
Справедливость этих формул легко проверить, дифференцируя правую часть соотношения и получая подинтегральную функцию.
Лекция 2. Методы интегрирования и таблица интегралов.
Метод подведения под дифференциал.
Пусть известен интеграл ( - первообразная для функции ). Тогда
Главное здесь – «догадаться», как представить в виде .
Доказательство. по теореме о сложной функции. Следовательно, функция и являются первообразными для функции и, по теоремам о первообразных, различаются на константу.
Этот метод применяется часто. Например, , .
Метод замены переменной.
Это – универсальный метод, метод подведения под дифференциал является частным случаем метода замены переменной.
Теорема. Пусть функция непрерывно дифференцируема в некоторой области и имеет непрерывно дифференцируемую обратную функцию . Тогда где .
Доказательство. Дифференцируя обе части, используя теоремы о производной сложной функции и инвариантность формы записи первого дифференциала, получим тождество дифференциалов.
, где . Из него следует равенство интегралов в левой и правой частях.
Заметим, что требования к обратной функции нужны, чтобы суметь возвратиться обратно, от переменной к переменной .
Для вычисления интегралов вида , если вместо него удобно вычислять интеграл , пользуются методом интегрирования по частям.
= - ,
если интегралы в обеих частях соотношения существуют.
Докажем справедливость этой формулы. Дифференцируя произведение функций, получим или
.
Интегралы левой и правой частей существуют().
Интегрируя, получим нужное соотношение.
Примеры.
.
Вычислим интегралы , .
,
.
Теперь, подставляя второй интеграл в первый, получим
.
Аналогично, подставляя первый интеграл во второй, получим
.
Пополним таблицу интегралов, применяя методы интегрирования (в первой лекции получены четыре интеграла).
5.
6.
7.
8.
Здесь сделана замена переменной, подстановка - одна из подстановок Эйлера,
, , .
9.
()
.
.
Перенося искомый интеграл из правой части в левую часть, получим
10.
11.
12.
13. - вывести самостоятельно.
Эти соотношения представляют собой таблицу основных интегралов.