Лекции.Орг
 

Категории:


Агроценоз пшеничного поля: Рассмотрим агроценоз пшеничного поля. Его растительность составляют...


Универсальный восьмиосный полувагона: Передний упор отлит в одно целое с ударной розеткой. Концевая балка 2 сварная, коробчатого сечения. Она состоит из...


Классификация электровозов: Свердловский учебный центр профессиональных квалификаций...

Свойства арифметических действий над числами и правила



Название свойства (правила) Математическая запись Формулировка свойства (правила)
Переместительное свойство сложения А + В = В + А От перестановки слагаемых значение суммы не меняется (о перестановке слагаемых)
Прибавление нуля А + 0 = А  
Сочетательное свойство сложения (А + В) + С = А + (В + С) Если при сложении нескольких чисел сумму рядом стоящих слагаемых заменить её значением, значение общей суммы не изменится (о группировке слагаемых, о перестановке скобок)
Переместительное свойство умножения А * В = В * А От перестановки множителей значение произведения не изменится (о перестановке множителей)
Умножение единицы и на единицу, деление на единицу 1 * А = А А * 1 = А А : 1 = А  
Умножение нуля и на нуль 0 * А = 0 А * 0 = 0  
Сочетательное свойство умножения (А * В) * С = А * (В * С) Если при умножении нескольких чисел произведение рядом стоящих множителей заменить его значением, значение общего произведения не изменится (о группировке множителей, о перестановке скобок)
Невозможность деления на нуль А : 0  
Распределительное свойство умножения относительно сложения А*(В + С) = А* В + А* С (А + В)*С = А*С + В*С Значение произведения суммы на число не изменится, если на него умножить каждое слагаемое и полученные результаты сложить  
Распределительное свойство умножения относительно вычитания А* (В – С) + А*В – А*С (А – В)*С = А*С – В*С  
Монотонность сложения А = В А + С = В + С  
Монотонность умножения А = В А*С = В*С  

 

 

Приложение № 3

Программа М.И. Моро и др. УМК «Школа России», 2класс, концентр «Сотня», раздел: «Арифметические действия», тема: «Умножение и деление»

Логико–математический анализ темы урока: «Деление»

1.Определения смысла деления с позиции математики

В курсе математики существуют различные трактовки конкретного смысла действия деления. Это связано с тем, что трактовки определений смысла деления могут основываться на различных математических теориях: аксиоматической, теории множеств, теории скалярных величин. Рассмотрим эти определения:

а) при аксиоматическом построении теории натуральных чисел деление определяется как операция, обратная умножению. Поэтому между делением и умножением устанавливается тесная взаимосвязь. Если a*b=c, то, зная произведение c и один из множителей, можно при помощи деления найти другой множитель.

Определение: Делением натуральных чисел a и b называется операция, удовлетворяющая условию: a: b=c тогда и только тогда, когда b*c=a.

б) с точки зрения теории множеств деление чисел связывается с разбиением конечного множества на равночисленные попарно непересекающиеся подмножества и с его помощью решаются две задачи: отыскание числа элементов в каждом подмножестве разбиения (деление на равные части) и отыскание числа таких подмножеств (деление по содержанию).

Определение: Если a=n(A) и множество A разбито на попарно непересекающиеся равночисленные подмножества и если:

b – число элементов в каждом подмножестве, то частное a: b – это число таких подмножеств;

b - число подмножеств, то частное a: b - это число элементов в каждом подмножестве.

в) с точки зрения теории скалярных величин деление натуральных чисел связано с переходом в процессе измерения к новой единице величины, более крупной.

Определение: если натуральное число a – мера величины X при единице величины E , а натуральное число b – мера новой единицы величины E1 при единице величины E , то частное a: b – это мера величины X при единице величины E1:

a: b=mE(X): mE(E1)=mE1(X)

2. Анализ методического подхода к изучению конкретного смысла деления в начальном курсе математики

В программе М.И.Моро и др. УМК «Школа России» при изучении конкретного смысла деления за основу берется теоретико – множественный подход. С точки зрения этого подхода конкретный смысл деления раскрывается как связь между операцией разбиения конечного множества на равночисленные попарно непересекающиеся подмножества и действием деления. Изучение смысла действия деления осуществляется последовательно через анализ младшими школьниками разного рода ситуаций, связанных с выполнением операции разбиения конечного множества на равночисленные попарно непересекающиеся подмножества. Сначала ученикам предлагаются ситуации, связанные с выполнением операции разбиения конечного множества на равночисленные попарно непересекающиеся подмножества с заданным числом элементов и неизвестным количеством этих подмножеств (на примерах задач на деление по содержанию). Затем, предлагаются ситуации, связанные с выполнением операции разбиения конечного множества на равночисленные попарно непересекающиеся подмножества с неизвестным числом элементов и заданным количеством этих подмножеств (на примере задач на деление на равные части). В учебнике не дается явного определения смысла деления, авторы используют контекстуальный способ неявного определения (через анализ ситуаций). Такой способ определения позволяет учащимся понять, что деление – это арифметическое действие, которое связано с разбиением групп предметов поровну (на равные части). При ознакомлении со смыслом деления используется индуктивный путь познания, поэтому чтобы ученики смогли выделить и понять существенные признаки деления необходимо рассмотреть достаточное количество разнообразных ситуаций.

Психолого – дидактический анализ знания

Предмет усвоения: знание конкретного смысла деления

Существенные признаки:

Термин: деление

Родовое отношение: арифметическое действие

Видовой признак: действие, связанное с разбиением групп предметов поровну (на равные части)

Несущественные признаки:

фабула (сюжет рассматриваемых ситуаций),

числовые характеристики (число элементов множества, число элементов в каждом из равночисленных подмножеств, количество подмножеств)

Средства усвоения:

знания: конкретного смысла вычитания, конкретного смысла умножения;

умения: практически выполнять операцию разбиения множества на равночисленные попарно непересекающиеся подмножества и находить численность разбиения.

Этап усвоения: восприятие, осмысление

Действие, направленное на формирование знания конкретного смысла деления:

умение устанавливать связь между операцией разбиения множества на равночисленные попарно непересекающиеся подмножества и действием деления.

 





Дата добавления: 2015-10-19; просмотров: 2421 | Нарушение авторских прав


Рекомендуемый контект:


Похожая информация:

Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.003 с.