Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Теоретический материал. Теория графов в последнее время широко используется в различных отраслях науки и техники, особенно в экономике и социологии




Теория графов в последнее время широко используется в различных отраслях науки и техники, особенно в экономике и социологии.

Основы теории графов разработал Леонард Эйлер, решавший задачу о разработке замкнутого маршрута движения по мостам в г. Кенигсберге. При решении задачи он обозначил каждую часть суши точкой, а каждый мост – линией, их соединяющей. В результате был получен граф (рис. 1).

Эйлер доказал, что такая задача решения не имеет. Быстрое развитие теория графов получила с созданием электронно – вычислительной техники, которая позволяла решить многие задачи алгоритмизации.

Пусть на плоскости задано некоторое множество вершин Х и множество соединяющих их дуг. Графом называется бинарное отношение множества Х и множества : , или, иначе .

Граф называется ориентированным, если указано направление дуг и неориентированным, если такое направление не указано. Примером неориентированного графа является карта дорог.

Петля – это ребро, у которого начальная и конечная вершины совпадают. Две вершины называются смежными, если существует соединяющая их дуга. Ребро называется инцидентным вершине, если оно выходит или входит в вершину.

Степенью (валентностью) вершины называется число инцидентных ей ребер. Кратностью пары вершин называется число соединяющих их ребер или дуг.

В изображении графа имеется относительно большая свобода в размещении вершин и выборе формы соединяющей их ребер. Поэтому один и тот же граф может быть представлен (на плоскости) по-разному.

Графы называются изоморфными, если между множествами их вершин существует взаимно однозначное соответствие, такое, что вершины соединены ребрами в одном из графов в том и только том случае, когда соответствующие им вершины соединены в другом графе. Если ребра графа ориентированы, то их направление в изоморфных графах также должно соответствовать друг другу.

В теории графов есть понятие обход графа. Это маршрут, содержащий все ребра или вершины графа и обладающий определенными свойствами. Наиболее известными обходами графа являются Эйлеровы и гамильтоновы цепи и циклы.





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 584 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2230 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.