Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принципиальные схемы газотурбинных установок открытого цикла




 

Газотурбинным двигателем (ГТД) можно назвать такой двигатель, в котором в качестве рабочего тела (в отличие от паровых турбин) используется неконденсирующийся газ (воздух, продукты сгорания топлива или нейтральные газы), а качестве тягового двигателя применяется газовая турбина, а все основные процессы цикла (в отличие от поршневых двигателей) совершаются в различных конструктивных элементах установки [3]. Сам термин «турбина» происходит от латинских слов turbineus – вихреобразный, или turbo – волчек. Турбина и есть тот двигатель, в котором механическая работа на валу машины получается за счет преобразования кинетической энергии газовой струи, в свою очередь получаемую в результате преобразования потенциальной энергии рабочего тела – энергии сгоревшего топлива.

В основе современных представлений превращения тепла в работу лежат два важнейших положения термодинамики: невозможность создания вечного двигателя первого рода, когда полезная работа получается без затраты энергии извне (следствие первого начала термодинамики), и невозможность создания вечного двигателя второго рода, в котором тепло полностью превращалась бы в работу (следствие второго начала термодинамики).

Следовательно, непременным условием создания и работы любого теплового двигателя является наличие материальной среды – рабочего тела и, по меньшей мере двух тепловых источников – источника высокой температуры (нагреватель), от которого берется тепло для преобразования части его в работу, и источника низкой температуры, которому отдается часть неиспользованного тепла в двигателе.

Это значит, что каждый тепловой двигатель должен состоять из нагревателя, расширительной машины, холодильника и компрессионной машины. Причем, так как необходимо непрерывно превращать тепло в работу, то необходимо и непрерывно, наряду с подводом тепла и расширением, сжимать рабочее тело, причем при таких условиях, чтобы работа сжатия была бы меньше работы расширения.

Получаемая в двигателе полезная работа определяется как разность между работой расширения и работой сжатия.

Основным отличительным признаком газотурбинного двигателя, например, от поршневых двигателей внутреннего сгорания, является организация круговых процессов. В поршневых машинах, как известно, все основные процессы цикла – сжатие, подвод тепла и расширение последовательно сменяют друг друга в одном и том же замкнутом пространстве система цилиндр – поршень), а в газотурбинном двигателе все эти процессы непрерывно осуществляются в различных его элементах, последовательно расположенных по ходу движения рабочего тела (компрессор – камера сгорания - газовая турбина).

В зависимости от способов организации подвода тепла топлива к рабочему телу, организации процессов сжатия и расширения, газотурбинные установки (ГТУ) могут быть выполнены по открытому (разомкнутому), закрытому (замкнутому) и полузамкнутому циклам.

В ГТУ открытого цикла, представляющих наибольший промышленный интерес и получивших наибольшее распространение, наружный воздух, пройдя систему очистных фильтров, процесс сжатия в компрессоре, систему подвода тепла топлива в камере сгорания и процесс расширения образовавшихся продуктов сгорания в газовой турбине, через выхлопную трубу выбрасывается в атмосферу и его уже нельзя вернуть в установку вновь в качестве рабочего тела.

В ГТУ закрытого цикла, рабочее тело (например, воздух), находящиеся под относительно высоким давлением, постоянно циркулирует в системе, последовательно проходит процессы сжатия, подвода тепла, расширения и охлаждения перед поступлением вновь на сжатие. При этом процессы охлаждения рабочего тела и подвод тепла осуществляются с использованием соответствующих теплообменных аппаратов, исключая тем самым непосредственный контакт между рабочим телом, топливом и продуктами его сгорания.

ГТУ полузакрытого типа являются установками промежуточной схемы - между установками открытого и закрытого циклов.

Отличительной особенностью термина газотурбинный двигатель от термина газотурбинная установка является то, что в понятие газотурбинная установка включается не только само понятие газотурбинный двигатель, но и сопутствующие ему элементы, обеспечивающие его работу (система организации подвода циклового воздуха, топлива, смазки, системы пуска и остановки агрегата, разного рода контролирующие приборы и т.д.)

Некоторые простейшие схемы ГТУ открытого цикла приведены на Рис.1.1. Схема а) соответствует варианту ГТУ в одновальном исполнении; схема б) – варианту ГТУ в двухвальном исполнении (ГТУ с независимой силовой турбиной).

Рабочий процесс ГТУ простейшей схемы Рис. 1.1а и Рис. 1.1б осуществляется следующим образом: атмосферный воздух, пройдя систему воздушных фильтров, поступает на вход осевого компрессора (К), где сжимается до давления 0,6-1,6 МПа. После сжатия в компрессоре, воздух с температурой примерно 240-340 0С поступает в камеру сгорания (КС), где за счет сжигания подводимого топлива, температура рабочего тела доводится до величины, обусловленной жаростойкостью лопаток и дисков газовой турбины (Т) – в стационарных ГТУ порядка 800-950 0С; в авиационных – порядка 1000-1150 0С. После прохождения газовой турбины, продукты сгорания с температурой порядка 400-500 0С выбрасываются в атмосферу.

Мощность, развиваемая газовой турбиной, идет на привод осевого компрессора (большая ее часть, примерно 65 – 70 %) и на привод центробежного нагнетателя, либо для выполнения какой-то другой полезной нагрузки. КПД таких установок в настоящее время могут находиться на уровне 28-32%.

С точки зрения основных показателей ГТУ на номинальной нагрузке, приведенные схемы ГТУ (а) и (б) между собой ничем не отличаются, но схема (б), получившая развитие на магистральных газопроводах, позволяет стабилизировать показатели работы установки на переменной нагрузке, в силу того, что турбина низкого давления (ТНД), которую иногда называют тяговой или силовой турбиной, может иметь различную частоту вращения силового вала в зависимости от изменения полезной нагрузки и не оказывать при этом практически какого-либо влияния на частоту вращения вала турбины высокого давления (и осевого компрессора), сохраняя тем самым подачу циклового воздуха на постоянном уровне. В этом случае система осевой компрессор- турбина высокого давления выступают как генератор газа в ГТУ.

В одновальных установках все элементы ГТУ – осевой компрессор, газовая турбина и нагнетатель (полезная нагрузка) находятся на одном валу, что естественно приводит к тому, что при работе они все имеют одну и туже частоту вращения. Это приводит к тому, что при использовании их, например, на газопроводах различные законы изменения характеристик одновальной ГТУ и нагнетателя, при снижении частоты вращения, приводят к тому, что ГТУ быстрее теряет мощность, чем снижается мощность, потребляемая нагнетателем. Это приводит к тому, что одновальная ГТУ может обеспечить режим работы нагнетателя только в ограниченном диапазоне изменения частоты вращения его вала. При ухудшении КПД нагнетателя или элементов ГТУ, осуществить работу агрегата с приводом от одновальной газотурбинной установки в широком диапазоне изменения частоты вращения вала нагнетателя будет уже невозможно.

В ГТУ с «разрезным» валом, вал силовой турбины и нагнетателя, не будучи механически связанными с валом осевого компрессора и турбины высокого давления, может иметь практически любую частоту вращения, ему необходимую.

Благодаря этим особенностям, двухвальные ГТУ как без регенерации Рис. 1.1б, так и с регенерацией тепла отходящих газов, Рис 1.1в и получили широкое распространение на газопроводах.

Рабочий процесс газотурбинной установки с регенерацией тепла отходящих газов (Рис. 1.1 в) осуществляется следующим образом: атмосферный воздух после прохождения системы воздушных фильтров (на схемах они не показаны), где он очищается от пыли и других примесей, поступает на вход осевого компрессора (К), где сжимается до давления 0,6-0,8 МПа и после сжатия в компрессоре воздух поступает в регенератор -–воздухоподогреватель (Р), где за счет использования тепла отходящих из турбины газов его температура повышается, обычно на 230-280 0С. После регенератора воздух поступает в камеру сгорания (КС), куда одновременно извне подается топливный газ, в результате чего температура газов перед турбиной высокого давления (ТВД) доводится до заданной величины. После расширения газов в газовой турбине, продукты сгорания проходят регенератор, в котором они частично охлаждаются, подогревая тем самым сжатый воздух после осевого компрессора перед поступлением его в камеру сгорания, и далее через выхлопную трубу выбрасываются в атмосферу.

Коэффициент полезного действия газотурбинной установки с регенерацией тепла отходящих газов в настоящее время достигает величины порядка 30-33%.

Следует заметить, что наличие регенератора в схемах ГТУ, наряду со значительной экономией топливного газа, сопровождается неизбежными потерями мощности установки на преодоление гидравлических сопротивлений рабочего тела в газовоздушных трактах воздухоподогревателя, усложняет и удорожает установку, увеличивает расходы на ее обслуживание. Поэтому вопрос о целесообразности использования регенеративных установок на магистральных газопроводах решается на основе термодинамических и основанных на них технико-экономических расчетах.

Сверху Рис. 1.1 в показаны процессы, характеризующие образование цикла ГТУ в координатах Р-v и T-S. На этих графиках линия 1-2 характеризует процесс сжатия воздуха в осевом компрессоре; линия 2-3 – процесс подвода тепла в регенераторе и камере сгорания; линия 3-4 – процесс расширения продуктов сгорания в газовой турбине; линия 4-1 – замыкание цикла, поступление новой порции воздуха на сжатие его в осевом компрессоре. Здесь же приведен цикл ГТУ и в координатах T-S. Линиями 1-2 и 3-4 соответственно показаны обратимые процессы сжатия и расширения; линями 1-21 и 3-41 отмечены соответственно реальные процессы сжатия и расширения рабочего тела в цикле ГТУ.

В настоящее время на магистральных газопроводах относительно широкое распространение получили и получают газотурбинные установки авиационного типа. В большинстве своем они выполнены по схеме Рис. 1.1 б, но в ряде случаев они выполнены и по схеме Рис. 1.1 г., имеющей две ступени сжатия воздуха без его промежуточного охлаждения между компрессорами и в конструктивном отношении выполненные как трехвальные установки. Такие схемы имеют два компрессора и три последовательно расположенные газовые турбины: турбина высокого давления (ТВД), турбина среднего давления (ТСД) и турбина низкого давления (ТНД) – силовая турбина, находящаяся на одном валу с нагнетателем газа. Компрессор первой ступени сжатия приводится во вращение от турбины среднего давления, компрессор второй ступени сжатия – от турбины высокого давления. Конструктивно вал компрессора первой ступени сжатия и турбины среднего давления располагается внутри вала, соединяющего компрессор второй ступени сжатия и турбину высокого давления. Компрессоры первой и второй ступени сжатия работают на различных частотах вращения. Газотурбинные установки подобных схем позволяют получить высокие соотношения давлений сжатия в цикле – на уровне 16-20, что в сочетании с относительно высокими температурами газов перед ТВД в авиационных ГТУ (1000-1150 0С) позволяет получать КПД установки на уровне 34-35% и даже выше.

Желание получить в газотурбинных установках большую удельную мощность и высокий КПД, привело к разработке и созданию установок с несколькими ступенями сжатия воздуха в осевых компрессорах и его промежуточным охлаждением в процессе сжатия между компрессорами, несколькими ступенями подогрева рабочего тела между газовыми турбинами в процессе его расширения и с регенерацией теплоты отходящих газов (Рис. 1.1 д). Комплексное использование теплотехнических мероприятий: промежуточное охлаждение воздуха в процессе его сжатия, регенеративный погрев воздуха после компрессоров и промежуточный подвод тепла в процессе расширения, дают наибольший эффект как на пути повышения КПД установки (который может достигать величины порядка 40-45%), так и удельной мощности ГТУ.

Однако, трудность освоения и использования сложных схем ГТУ, низкие показатели теплообменных аппаратов, отсутствие мобильности при эксплуатации установок приводят к тому, такие установки целесообразны к использованию только в системах большой энергетики.

На магистральных газопроводах в первую очередь целесообразно использовать установки, созданные по схемам Рис. 1.1 б, Рис. 1.1 в и Рис. 1.1 г.

В последние годы, с целью повышения КПД установок за счет рационального использования тепла отходящих газов ГТУ, делаются попытки использовать на газопроводах установки так называемого парогазового цикла (Рис.1.2)., с точки зрения термодинамики удачно сочетающие в себе особенности цикла газовой турбины и цикла паровой турбины. Цикл такой установки в координатах Т-S приведен на Рис. 1.3

По этой схеме продукты сгорания ГТУ после турбины низкого давления поступают в котел-утилизатор для выработки пара высокого давления. Полученный пар из котла-утилизатора поступает в паровую турбину, где расширяясь вырабатывает полезную работу, идущую на выработку электроэнергии на нужды компрессорной станции или привод нагнетателей. Отработанный пар после паровой турбины проходит конденсатор, конденсируется и полученная жидкость, насосом вновь подается в котел-утилизатор, замыкая тем самым цикл силовой установки. КПД таких установок может достигать величины порядка 45-48% и даже выше. Однако, установки таких схем, прежде всего в силу своей дороговизны, необходимости наличия питательной воды на компрессорной станции и ее специальной подготовки, несомненно сдерживают развитие таких установок и в силу отмеченных причин они вряд ли выйдут из стадии использования на газопроводах только отдельных образцов.

Таким образом, в настоящее время на магистральных газопроводах в основном используются три типа газотурбинных установок: стационарные, авиационные и судовые [11].

К стационарным газотурбинным установкам, специально сконструированных для использования на газопроводах, следует отнести установки: ГТ-700-5, ГТК-5, ГТ-750-6 ГТ-6-750, ГТН-6, ГТК-10-2-4, ГТН-25 мощностью от 4 МВт до 25 МВт;

К авиоприводным агрегатам следует отнести установки типа ГПА-Ц-6,3, ГПА-Ц-16 и др., установки импортного производства таких как «Коберpа –182», производства фирмы «Ролл-Ройс» (Великобритания»), «Солар», «Центавр» (США).

К судовым газотурбинным агрегатам следует отнести установки типа ГПУ-10 и ДТ-90 (Украина).

В общей сложности на газопроводах на конец 2002 г. эксплуатировалось свыше 3 тыс. ГТУ различных типов и схем с общей установленной мощностью свыше 36 млн. кВт, что составляет около 85% общей установленной мощности компрессорных станций ОАО «Газпром».

Характеристики приведенных типов ГТУ на конец 2002 г. приведены в табл. 1.1.

Таблица 1.1.

Типы газотурбинных установок, используемых на газопроводах.

Тип ГТУ КПД,% Единичная мощность, кВт Количество ГПА, штук Суммарная мощность, кВт
Центавр ГТ-700-5 ГТК-5 ГТ-750-6 ГТ-6-750 ГТН-6 ГПА-Ц-6,3 ГТК-10 ГТК-10И ГПУ-10 ГТНР-10 ДЖ-59 Коберра-182 ГТНР-12,5 ГТК-16 ГТН-16 ГПА-Ц-16 ГПУ-16/ГПА-16 ДГ-90 ГТН-25 ГПА-Ц-25 ГТК-25И   2620/3900 6000/6500 11900/12900 20/10 99/5 19/14 58/19  
ИТОГО - -    

 

 

Анализ данных табл. 1.1 показывает, что ряд мощностей ГТУ, используемых на магистральных газопроводах ОАО «Газпром» можно описать рядом примерно следующей последовательности: 4, 6, 10, 16 и 25 мВт. Паспортный КПД используемых агрегатов изменяется в диапазоне 24-35 %, причем численное значение КПД агрегата естественно увеличивается с ростом его мощности.

 





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 2279 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2487 - | 2350 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.