Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Кинетическая энергия вращающего тела. Момент инерции




Рассмотрим вращательное движение твердого тела относительно неподвижной и проходящей через него оси. Разобьем это тело на множество элементарных объемов, масса каждого из которых равна Dmi и радиус вращения ri (Рис.3).

Рис.3.

Кинетическая энергия i – го элемента равна

(1)

Кинетические энергии различных элементов будут разными, т.к. различны их линейные скорости. Чтобы рассчитать полную энергию вращательного движения твердого тела, необходимо просуммировать энергии всех его элементов:

(2)

или , (3)

т.к. линейная скорость вращения связана с угловой скоростью ui=wri.

Поскольку угловая скорость w одинакова для всех элементов тела, ее можно вынести за знак суммы:

. (4)

Величина называется моментом инерции твердого тела, а - моментом инерции одного элемента (материальной точки), размерами которого можно пренебречь по сравнению с его радиусом вращения. Момент инерции тела равен сумме моментов инерции элементов, составляющих это тело:

. (5)

Тогда формула для кинетической энергии вращательного движения твердого тела принимает вид:

. (6)

Момент инерции не зависит от скорости вращения тела и характеризует инертность тела при вращательном движении: чем больше I, тем большую энергию надо затратить для достижения заданной угловой скорости. Это следует из формулы (6). Значение момента инерции определяется не только массой тела, но и ее распределением относительно оси вращения. Для тонкостенного полого цилиндра (толщина которого много меньше его радиуса R) момент инерции, согласно (5), будет равен:

. (7)

В случае непрерывного распределения массы сумма в определении (5) сводится к интегралу:

, (8)

где dm – масса материальной точки тела, r - плотность в определенной точке тела, dV – элементарный объем. Интегрирование производится по всему объему тела.

В качестве примера рассчитаем момент инерции сплошного цилиндра высотой h относительно его геометрической оси. Для этого разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r (рис.4).

Рис.4.

Так как радиусы точек бесконечно тонкого цилиндра равны между собой, то его момент инерции можно рассчитать по формуле:

, (9)

где dm – масса всего элементарного цилиндра. Выразим массу полого элементарного цилиндра через его объем dV и плотность r:

. (10)

Следовательно, момент инерции элементарного цилиндра равен:

, (11)

а всего цилиндра:

, (12)

где R – радиус цилиндра. Производя интегрирование и подставив пределы, получим:

. (13)

Но phR2 - объем цилиндра, а его масса m=rV=phrR2. Тогда его момент инерции равен:

. (14)

Без расчета приведем формулы моментов инерции однородного шара относительно оси, проходящей через его центр:

(15)

и для однородного стержня относительно перпендикулярной ему оси, проходящей через его центр:

, (16)

где l – длина стержня, R – радиус шара, m – массы этих тел.

Для расчета момента инерции тела относительно оси, не проходящей через его центр масс, нужно воспользоваться теоремой Штейнера, которая формулируется следующим образом: Момент инерции относительно произвольной оси равен моменту инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, плюс произведение массы тела на квадрат расстояния, между осями:

. (17)





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 448 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.