Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные комбинаторные конфигурации




ГЛАВА 1. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ

 

1. Среди основных задач комбинаторики выделяют следующие: пересчет, перечисление, классификация и оптимизация. Если требуется определить количество элементов, обладающих некоторым свойством или совокупностью свойств, то это задача пересчета. Если при этом необходимо указать список элементов, то это задача перечисления. Если пересчет приводит к слишком большим числам, то отказываются от соответствующего перечисления и только классифицируют элементы с помощью какого-нибудь соотношения, - и тогда это задача классификации. В некоторых задачах на множестве решений можно ввести функцию величины и относительно этой функции рассматривать задачу оптимизации: найти экстремум функции на определенном множестве объектов, либо указать все или некоторые объекты, для которых достигается экстремальное значение.

2. Комбинаторная конфигурация - это расположение конечного множества элементов, удовлетворяющее ряду специальных свойств. К основным, комбинаторным конфигурациям относятся сочетания, размещения и перестановки. Ряд других конфигураций может быть сведен к ним.

Набор (множество или кортеж) элементов

составленный из элементов множества , называется выборкой объема k из n элементов, или (n,k –выборкой). Выборки, различающиеся составом элементов, всегда считаются различными.

Выборка называется упорядоченной, если порядок элементов в ней задан (т.е. она представляет из себя кортеж). Две упорядоченные выборки, различающиеся только порядком следования элементов, считаются различными. Если порядок элементов в выборке несуществен, то выборка называется неупорядоченной.

Упорядоченная (n,k)-выборка, в которой элементы могут повторяться, называется (n,k)-размещением с повторениями, или размещением с повторениями из n элементов по k. Если элементы (n,k) -выборки попарно различны, то она называется (n, k)- размещением без повторений, или размещением без повторений из n элементов по k.





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 2229 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2154 - | 2045 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.