Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Отображения и функции




Элементы теории функций

 

Определение 1. Пусть заданы множества и . Отображением множества в или функцией, определенной на множестве и принимающей значения в , называется соответствие (закон, правило) , по которому каждому элементу из сопоставляется один и только один элемент из множества .

Запись : означает, что отображение действует из в . Множество называют исходным множеством отображения или областью определения функции , множество - конечным множеством отображения или областью значения функции.

Примеры.

1. «Месяц рождения» может быть правилом, связывающим элементы множества людей с элементами множества месяцев . Для каждого элемента существует единственный элемент , т.к. каждый человек родился в каком-то определенном месяце. В приведенном примере имеет место отображение множества людей в множество месяцев , т.е. .

2. Рассмотрим два соответствия и , приведенные на рис. 2. Соответствие (рис. 2а) является отображением, т.к. каждому элементу сопоставляется единственный элемент . Соответствие (рис. 2б) не является отображением, т.к. элементу (и элементу ) сопоставляется не единственный элемент множества .

а) б)

Рис. 2

Определение 2. Отображение , определенное равенством называется тождественным и обозначается , т.е. тождественное отображение : оставляет элементы множества на месте.

Определение 3. Отображение называется постоянным, если для любого элемента из является одним и тем же элементом из :

, где .

Определение 4. Пусть задана функция . Элемент , соответствующий элементу при отображении , называется образом элемента или значением функции , соответствующим элементу .

Элемент обычно называют аргументом функции .





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 349 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2484 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.